
Implements BIOS emulation support for
BHyVe: A BSD Hypervisor

Abstract
Current BHyVe only supports FreeBSD/amd64
as a GuestOS.
One of the reason why BHyVe cannot support
other OSes is lack of BIOS support.
My project is implementing BIOS emulator on
BHyVe, to remove these limitations.

1. Background
1.1 History of virtualization on x86
architecture
There's a famous requirements called "Popek
& Goldberg Virtualization requirements"1,
which defines a set of conditions sufficient for
an architecture to support virtualization
efficiently.
Efficient virtualization means virtualize
machine without using full CPU emulation, run
guest code natively.
Explain the requirements simply, to an
architecture virtualizable, all sensitive
instructions should be privileged instruction.
Sensitive instructions definition is the
instruction which can interfere the global status
of system.
Which means, all sensitive instructions
executed under user mode should be trapped
by privileged mode program.
Without this condition, Guest OS affects Host
OS system status and causes system crash.
x86 architecture was the architecture which
didin’t meet the requirement, because It had
non-privileged sensitive instructions.

To virtualize this architecture efficiently,
hypervisors needed to avoid execute these
instructions, and replace instruction with
suitable operations.
There were some approach to implement it:
On VMware approach, the hypervisor replaces
problematic sensitive instructions on-the-fly,
while running guest machine. This approach
called Binary Translation2.
It could run most of unmodified OSes, but it
had some performance overhead.
On Xen approach, the hypervisor requires to
run pre-modified GuestOS which replaced
problematic sensitive instructions to dedicated
operations called Hypercall. This approach
called Para-virtualization3.
It has less performance overhead than Binary
Translation on some conditions, but requires
pre-modified GuestOS.
Due to increasing popularity of virtualization
on x86 machines, Intel decided to enhance x86
architecture to virtualizable.
The feature called Intel VT-x, or Hardware-
Assisted Virtualization which is vendor
neutral term.
AMD also developed hardware-assisted
virtualization feature on their own CPU, called
AMD-V.

1.2 Detail of Intel VT-x
VT-x provides new protection model which
isolated with Ring protection, for
virtualization.
It added two CPU modes, hypervisor mode
and guest machine mode.
Hypervisor mode called VMX Root Mode,
and guest machine mode called VMX non
Root Mode(Figure 1).

 Gerald J. Popek and Robert P. Goldberg. 1974. Formal requirements for virtualizable third

generation architectures. Commun. ACM 17, 7 (July 1974), 412-421. DOI=10.1145/361011.361073
http://doi.acm.org/10.1145/361011.361073

2 Brian Walters. 1999. VMware Virtual Platform. Linux J. 1999, 63es, Article 6 (July 1999).

3 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer,
Ian Pratt, and Andrew Warfield. 2003. Xen and the art of virtualization. In Proceedings of the
nineteenth ACM symposium on Operating systems principles (SOSP '03). ACM, New York, NY,
USA, 164-177. DOI=10.1145/945445.945462 http://doi.acm.org/10.1145/945445.945462

http://doi.acm.org/10.1145/361011.361073
http://doi.acm.org/10.1145/361011.361073
http://doi.acm.org/10.1145/945445.945462
http://doi.acm.org/10.1145/945445.945462

User
(Ring 3)

Kernel
(Ring 0)

User
(Ring 3)

Kernel
(Ring 0)

VMX
root mode

VMX
non-root

mode

Figure 1. VMX root Mode and VMX non-root
Mode

On VT-x, hypervisor can run guest OS on
VMX non Root Mode without any
modification, including sensitive instructions,
without affecting Host OS system status.
When sensitive instructions are being executed
under VMX non Root Mode, CPU stops
execution of VMX non Root Mode, exit to
VMX Root Mode.
Then it trapped by hypervisor, hypervisor
emulates the instruction which guest tried to
execute.
Mode change from VMX Root Mode to VMX
non-root Mode called VMEntry, from VMX
non-root Mode to VMX Root Mode called
VMExit(Figure 2).

User
(Ring 3)

Kernel
(Ring 0)

User
(Ring 3)

Kernel
(Ring 0)

VMX
root mode

VMX
non-root

mode

VMEntry

VMExit

Figure 2. VMEntry and VMExit

Some more events other than sensitive
instructions which need to intercept by
hypervisor also causes VMExit.

For example, IN/OUT instruction causes
VMExit, and hypervisor emulates virtual
device access.
VT-x defines number of events which can
cause VMExit, and hypervisor needs to
configure enable/disable on each VMExit
events.
Reasons of VMExit is called VMExit reason,
it classified by genres of events.

Here are VMExit reason list:
• Exception or NMI
• External interrupt
• Triple fault
• INIT signal received
• SIPI received
• SM received
• Internal interrupt
• Task switch
• CPUID instruction
• Intel SMX instructions
• Cache operation instructions(INVD,

WBINVD)
• TLB operation instructions(HNVLPG,

INVPCID)
• IO operation instructions(INB, OUTB, etc)
• Performance monitoring conter operation

instruction(RDTSC)
• SMM related instruction(RSM)
• VT-x instructions(Can use for implement

nested virtualization)
• Accesses to control registers
• Accesses to debug registers
• Accesses to MSR
• MONITOR/MWAIT instructions
• PAUSE instruction
• Accesses to Local APIC
• Accesses to GDTR, IDTR, LDTR, TR
• VMX preemption timer
• RDRAND instruction

All configuration data related to VT-x stored to
VMCS(Virtual Machine Control Structure),
which is on memory data structure for each
guest machine4.
Figure 3 shows VMCS structure.

1.3 VT-x enabled hypervisor lifecycle
Hypervisors for VT-x works as following
lifecycle (Figure 4).

1. VT-x enabling
It requires to enable at first to use VT-x
features.
To enable it, you need set VMXE bit on
CR4 register, and invoke VMXON
instruction.

2. VMCS initialization
VMCS is 4KB alined 4KB page.
You need to notify the page address to CPU
by invoking VMPTRLD instruction, then

write initial configuration values by
VMWRITE instruction.
You need to write initial register values
here, and it done by /usr/sbin/bhyveload.

3. VMEntry to VMX non root mode
Entry to VMX non root mode by invoking
VMLAUNCH or VMRESUME instruction.
On first launch you need to use
VMLAUNCH, after that you need to use
VMRESUME.
Before the entry operation, you need to
save Host OS registers and restore Guest
OS registers.
VT-x only offers minimum automatic save/
restore features, rest of the registers need to
take care manually.

4. Run guest machine
CPU runs VMX non root mode, guest
machine works natively.

4 If guest system has two or more virtual CPUs, VMCS needs for each vCPUs.

VMCS revision identifier

VMX-abort indicator

VM
C

S
da

ta

Guest-state area

Host-state area

VM-exection control fields

VM-exit control fields

VM-entry control fields

VM-exit information fields

VMCS data format revision number.

Error code of VMExit failure.

An area for saving / restoring guest registers.
Register saving/restoring are automatically
preformed at VMExit/VMEntry.
(Actually not all register are it's target. Some
registers should save by hypervisor manually.)
The area saves some non-register state,
instruction blocking state etc.

An area for saving / restoring hypervisor registers.
Usage is almost identical with Guest-state area.

A field control processor behavior in VMX non-root
operation. VMExit causing events can configure
here.

A field control processor behavior in VMExit
operation.

A field control processor behavior in VMEntry
operation. Enabling/Disabling 64bit mode can
configure here.

VMExit reason stored here.

Figure 3. Structure of VMCS

5. VMExit for some reason
When some events which causes VMExit,
CPU returns to VTX root mode.
You need to save/restore register at first,
then check the VMExit reason.

6. Do emulation for the exit reason
If VMExit reason was the event which
requires some emulation on hypervisor,
perform emulation. (Ex: Guest OS wrote
data on HDD
Depending Host OS scheduling, it may
resume VM by start again from 3, or task
switch to another process.

1.4 Memory Virtualization
Mordan multi-tasking OSes use paging to
provide individual memory space for each
processes.
To run guest OS program natively, address
translation on paging become problematic
function.
For example (Figure 5):
You allocate physical page 1- 4 to Guest A, and
5-8 to GuestB.
Both guests map page 1 of Process A to page 1
of guest physical memory.
Then it should point to:
• Page 1 of Process A on Guest A ->

Page 1 of Guest physical memory ->
Page 1 of Host physical

• Page 1 of Process B on Guest B ->
Page 1 of Guest physical memory ->
Page 5 of Host physical

But, if you run guest OS natively, CPU will
translate Page 1 of Process B on Guest B to
Page 1 of Host physical memory.
Because CPU doesn’t know the paging for
guests are nested.

There is software technique to solve the
problem called shadow paging (Figure 6).
Hypervisor creates clone of guest page table,
set host physical address on it, traps guest
writing CR3 register and set cloned page table
to CR3.
Then CPU able to know correct mapping of
guest memory.
This technique was used on both Binary
translation based VMware, and also early
implementation of hypervisors for VT-x.
But it has big overhead, Intel decided to add
nested paging support on VT-x from Nehalem
micro-architecture.

EPT is the name of nested paging feature
(Figure 7),
It simply adds Guest physical address to Host
physical address translation table.
Now hypervisor doesn’t need to take care guest
paging, it become much simpler and faster.

3. VMEntry to VMX
non root mode

4. Run guest
machine

5. VMExit for some
exit reason

6. Do emulation for
the exit reason

2. VMCS
initialization

1. VT-x enabling

7. Run another
process

Figure 4. VT-x enabled hypervisor lifecycle

Process A

1

Process B
1
2

Guest physical memory

2
1

3
4

1 1
2

1 3
2 4

Page table A

Page table B

Guest A

1

1
2

2
1

3
4

1 1
2

1 3
2 4

Host physical memory

2
1

7

3
4
5
6

8

Process A

Process B

Guest physical memoryPage table A

Page table B

Guest B

Figure 5. Problem of memory virtualization

1

1
2

2
1

3
4

1 2
2

1 3
2 4

2
1

7

3
4
5
6

8

1 5
2

1 7
2 8

Process A

Process B

Guest physical memory

Page table A

Page table B

Guest A

Host physical memory
Page table A'

Page table B'

Figure 6. Shadow paging

Figure 7. EPT

1

1
2

2
1

3
4

1 2
2

1 3
2 4

2
1

7

3
4
5
6

8

1 5
2 6

EPT A

3 7
4 8

Process A

Process B

Guest physical memory

Page table A

Page table B

Guest A
Host physical memory

Actually, not all VT-x supported CPUs
supports EPT, on these CPUs hypervisors still
need to do shadow paging.

2. BHyVe: BSD Hypervisor
2.1 What is BHyVe?
BHyVe is new project to implement a
hypervisor witch will integrate in FreeBSD.
The concept is similar to Linux KVM, it
provides “hypervisor driver” to unmodified
BSD kernel running on bare-metal machine.
With the driver, the kernel become a
hypervisor, able to run GuestOS just like
normal process on the kernel.
Both hypervisors are designed for hardware
assisted virtualization, unlike Xen’s para-
virtualization and VMware’s binary translation.
The kernel module only provides a feature to
switch CPU modes between Host mode and
Guest mode, almost all device emulation is
performed in userland process.

2.2 Difference of approach between Linux
KVM and BHyVe
Linux KVM uses modified QEMU5 as the
userland part6.
It’s good way to support large coverage of
Guest OSes, because QEMU is highly
developed emulator, many people already
confirmed to run variety of OSes on it.
KVM could support almost same features what
QEMU has, and it just worked fine.
BHyVe’s approach is different.

BHyVe implements minimum set of device
support which required to run FreeBSD guest,
from scratch.
In the result, we could have completely GPL-
free, BSD licensed, well coded hypervisor, but
it only supports FreeBSD/amd64 as a Guest
OS at this point.
One of the reason why BHyVe cannot support
other OSes is lack of BIOS support.
BHyVe loads and executes FreeBSD kernel
directly using custom OS loader runs on Host
OS, instead of boot up from disk image.
With this method, we need to implement OS
loader for each OSes, and currently we don’t
have any loader other than FreeBSD.
Also, it doesn’t support some OSes which calls
BIOS function while running.
So I started the project to implementing BIOS
emulator on BHyVe, to remove these
limitations.

2.3 Hardware requirements
BHyVe requires an Intel CPU which supports
Intel VT-x and EPT.
It means you will need Nehalem core or later
Intel CPUs, because EPT is only supported on
these processors.
Currently, AMD-V is not supported.
Installing on physical machine is best choice,
but it also works on recent version of VMware,
using Nested virtualization feature7.

2.3 Supported features
BHyVe only supports FreeBSD/amd64 8-10
for guest OS.

5 Original QEMU has full emulation of x86 CPU, but on KVM we want to use VT-x hardware

assisted virtualization instead of CPU emulation.
So they replace CPU emulation code to KVM driver call.

6 Strictly speaking, KVM has another userland implementation called Linux Native KVM Tools,
which is built from scratch - same as BHyVe’s userland part.
And it has similar limitation with BHyVe.

7 The technology which enables Hypervisor on Hypervisor. Note that it still requires Nehalem
core or later Intel CPUs even on VMware.

It emulates following devices:
• HDD controller: virtio-blk
• NIC controller: virtio-net
• Serial console: 16550 compatible PCI UART
• PCI/PCIe devices passthrough (VT-d)
Boot-up from virtio-blk with PCI UART
console is not general hardware configuration
on PC architecture, we need to change guest
kernel settings on /boot/loader.conf(on guest
disk image).
And some older FreeBSD also need to add a
virtio drivers8.
PCI device passthrough is also supported, able
to use physical PCI/PCIe devices directly.
Recently ACPI support and IO-APIC support
are added, which improves compatibility with
existing OSes.

2.4 BHyVe internal
BHyVe built with two parts: kernel module and
userland process.
The kernel module is called vmm.ko, it
performs actions which requires privileged
mode (ex: executes VT-x instructions.
Userland process is named /usr/sbin/bhyve,
provides user interface and emulates virtual
hardwares.
BHyVe also has OS Loader called /usr/sbin/
bhyveload, loads and initializes guest kernel
without BIOS.
/usr/sbin/bhyveload source code is based on
FreeBSD bootloader, so it outputs bootloader
screen, but VM instance is not yet executing at
that stage.
It runs on Host OS, create VM instance and
loads kernel onto guest memory area,
initializes guest machine registers to prepare
direct kernel boot.
To destroy VM instance, VM control utility /
usr/sbin/bhyvectl is available.
These userland programs are accesses vmm.ko
via VMM control library called libvmmapi.
Figure 8 illustrates overall view of BHyVe.

FreeBSD kernel

bhyveload bhyve

/dev/vmm/${vm_name} (vmm.ko)

Guest
kernel

1. Create VM instance,
load guest kernel

2. Run VM instace

H
D

N
I
C

C
onsole

Disk image
tap device

stdin/stdout

bhyvectl

libvmmapi

3. Destroy VM
instance

mmap/ioctl

Figure 8. BHyVe overall view

3. Implement BIOS
Emulation
3.1 BIOS on real hardware
BIOS interrupt calls are implemented as
software interrupt handler on real mode(Figure
9).
CPU executes initialization code on BIOS
ROM at the beginning of startup machine, it
initializes real mode interrupt vector to handle
number of software interrupts reserved for
BIOS interrupt calls(Figure 10).
BIOS interrupt calls aren’t only for legacy
OSes like MS-DOS, almost all boot loaders for
mordan OSes are using BIOS interrupt call to
access disks, display and keyboard.

3.2 BIOS on Linux KVM
On Linux KVM, QEMU loads Real
BIOS(called SeaBIOS) on guest memory area
at the beginning of QEMU startup.
KVM version of SeaBIOS’s BIOS call handler
accesses hardware by IO instruction or
memory mapped IO, and the behavior is
basically same as BIOS for real hardware.
The difference is how the hardware access
handled.
On KVM, the hardware access will trapped by
KVM hypervisor driver, and QEMU emulates

8 virtio is para-virtual driver which designed for Linux KVM. para-virtual driver needs special
driver for guest, but usually much faster than full emulation driver.

Interrupt vector

lowmem

Video RAM, etc

ROM BIOS

highmem

0000:0000

0000:0400

A000:0000

F000:0000
FFFF:0000
FFFF:000F

①Fetch interrupt handler address

②Jump to the handler address

③Handler accesses HW by IO instruction

Figure 10. Memory map on real hardware

Software interrupt(INTx)

CPU reads interrupt vector

Execute BIOS call handler

QEMU HW
Emulation

IO TrapSeaBIOS preforms IO
to virtual HW

QEMU emulates HW IOHyperVisor

Guest

int 13h

Figure 11. BIOS interrupt call mechanism on KVM

Software interrupt(INTx)

CPU reads interrupt vector

Execute BIOS call handler

IO

Hardware

int 13h

Figure 9. BIOS interrupt call mechanism on real hardware

Interrupt vector

lowmem

Video RAM, etc

SeaBIOS

highmem

0000:0000

0000:0400

A000:0000

F000:0000
FFFF:0000
FFFF:000F

①Fetch interrupt handler address

②Jump to the handler address

③Handler accesses HW by IO instr

QEMU emulates the IO

Figure 12. Memory map on KVM

hardware device, then KVM hypervisor driver
resume a guest environment(Figure 11).
In this implementation, KVM and QEMU
doesn’t trap BIOS interrupt calls, it just loads
real BIOS on guest memory space(Figure 12)
and emulates hardware device.

3.3 Emulating BIOS on BHyVe
3.3.1 doscmd
Port SeaBIOS on BHyVe and implement
hardware emulation was an option, and it was
probably best way to improve compatibility of
legacy code, but SeaBIOS is GPL’d software,
it’s not comfortable to bring in FreeBSD code
tree.
And there’s no implementation non-GPL
opensourced BIOS.
Instead, there’s BSD licensed DOS Emulator
called doscmd.
It’s the software to run old DOS application on
FreeBSD using virtual 8086 mode, similar to
DOSBox(but DOSBox is GPL’d software).

The emulator mechanism is described as
follows:
1. Map pages to lowmem area (begin from

0x0), load the DOS application on the area.
2. Enter virtual 8086 mode, start executing

the DOS application.
3. DOS application invokes BIOS interrupt

call or DOS API call by INTx instruction.
4. DOS Emulator traps software interrupt,

emulate BIOS interrupt call or DOS API
call.

5. Resume DOS application.
It traps BIOS interrupt calls and DOS API calls
and emulate them on FreeBSD protected mode
program.
I decided to port the BIOS interrupt call
emulation code to BHyVe and trap BIOS
interrupt call on BHyVe, instead of porting real
BIOS.

3.3.2 Run real mode program on VT-x
On older implementation of VT-x enabled CPU
doesn’t allow to VMEnter the guest which
doesn’t enable paging.

Which means real mode program cannot run
on VT-x, and hypervisors needed to virtualize
real mode without VT-x.
Linux KVM used full CPU emulation using
QEMU to virtualize real mode.
Some other hypervisors are used virtual 8086
mode.
This issue was resolved by extending VT-x
features.
Intel added unrestricted guest mode on
Westmere micro-architecture and later Intel
CPUs, it uses EPT to translate guest physical
address access to host physical address.
With this mode, VMEnter without enable
paging is allowed.
I decided to use this mode for BHyVe BIOS
emulation.

3.3.3 Trapping BIOS interrupt call
VT-x has functionality to trap various event on
guest mode, it can be done by changing VT-x
configuration structure called VMCS.
And BHyVe kernel module can notify these
events by IOCTL return.
So all I need to do to trapping BIOS call is
changing configuration on VMCS, and notify
event by IOCTL return when it trapped.
But the problem is which VMExit event is
optimal for the purpose.
It looks like trapping software interrupt is the
easiest way, but we may have problem after
Guest OS switched protected mode.
Real mode and protected mode has different
interrupt vector.
It’s possible to re-use BIOS interrupt call
vector number for different purpose on
protected mode.
Maybe we can detect mode change between
real mode/protected mode, and enable/disable
software interrupt trapping, but it’s bit
complicated.

Instead of implement complicated mode
change detection, I decided to implement
software interrupt handler which cause
VMExit.

The handler doesn’t contain programs for
handling the BIOS interrupt call, just perform
VMExit by VMCALL instruction.
VMCALL causes unconditional VMExit.
It’s for call hypervisor from guest OS, such
function is called Hypercall.

Following is simplest handler implementation:
 VMCALL
 IRET

Even program is same, you should have the
handler program for each vector.
Because guest EIP can be use for determine
handled vector number.

If you place BIOS interrupt call handler start at
0x400, and program length is 4byte for each
(VMCALL is 3byte + IRET is 1byte), you can
determine vector number from hypervisor with
following program:

vector = (guest_eip - 0x400) / 0x4;

BHyVe need to initialize interrupt vector and
set pointer of the handler described above.
In this way, it doesn’t take care about mode
changes anymore.

Figure 13 shows BIOS interrupt call
mechanism on my implementation.
On the implementation, it traps BIOS interrupt
call itself, emulates by hypervisor.

4. Implementation
Most of work are rewriting doscmd to fit
BHyVe interface, from FreeBSD virtual 8086
API.

• Code was 64bit unsafe
doscmd was designed only for 32bit x86, and
BHyVe is only for amd64.
So I need to re-write some codes to 64bit safe.

ex:
 u_long
　　　 ↓
 uint32_t

• Guest memory area started from 0x0
To use virtual 8086, doscmd places guest
memory area from 0x0.
But BHyVe’s guest memory area is mapped to
non-zero address, we need to move all address
to BHyVe’s guest memory area.

ex:
 *(char *)(0x400) = 0;
 　　　↓
 *(char *)(0x400 + guest_mem) = 0;

• Interface with /usr/sbin/bhyve
I don’t wanted to mix doscmd’s complicated
source code with /usr/sbin/bhyve’s code, so I
modified doscmd’s Makefile to build it as a
library.
And named it libbiosemul.

Software interrupt(INTx)

CPU reads interrupt vector

Execute pseudo BIOS call handler

BHyVe BIOS
Emulation

VMCALL Trap
Pseudo BIOS issue

VMCALL instruction
(Hypercall)

BHyVe emulates BIOS callHyperVisor

Guest

int 13h

Figure 13. BIOS interrupt call mechanism on BHyVe

It exposed only few functions:

void biosemul_init(struct vmctx
*ctx, int vcpu, char *lomem, int
trace_mode);

int biosemul_call(struct vmctx
*ctx, int vcpu);

biosemul_init is called at initialization.
biosemul_call is main function, which called at
every BIOS call.

• Guest register storage
doscmd stored guest register values on their
structure, but BHyVe need to call ioctl to get /
set register value.
It’s hard to re-write all code to call ioctl, so I
didn’t changed doscmd code.
I just copy all register values to doscmd struct
at beginning of BIOS call emulation, and
copyback it the end of the emulation.

• Instruction level tracing
I implemented instruction level tracer to debug
BIOS emulator.
It’s also uses psuedo BIOS interrupt call
handler to implement.

5. Development status
It still early stage of development, none of
OSes boots up with the BIOS emulator.
I’m focusing to boot-up FreeBSD/amd64, now
mbr and boot1 are working correctly.

