
NPF in NetBSD 6

S.P.Zeidler 〈spz@NetBSD.org〉
The NetBSD Foundation

Mindaugas Rasiukevicius 〈rmind@NetBSD.org〉
The NetBSD Foundation

Abstract

NPF has been released with NetBSD 6.0 as an exper-

imental packet filter, and thus has started to see actual

use. While it is going to take a few more cycles before

it is fully ”production ready”, the exposure to users has

given it a strong push to usability. Fixing small bugs

and user interface intuitivity misses will help to evolve it

from a theoretical well-designed framework to a practical

packet filtering choice. The talk will cover distinguish-

ing features of NPF design, give an overview of NPF’s

current practical capabilities, ongoing development, and

will attempt to entice more people to try out NPF and

give feedback.

1 Introduction

NPF is a layer 3 packet filter, supporting IPv4 and IPv6,

as well as layer 4 protocols such as TCP, UDP and

ICMP/IPv6-ICMP. NPF offers the traditional set of fea-

tures provided by most packet filters. This includes state-

ful packet filtering, network address translation (NAT),

tables (using a hash or tree as a container), rule pro-

cedures for easy development of NPF extensions (e.g.

packet normalisation and logging), connection saving

and restoring as well as other features. NPF focuses on

high performance design, ability to handle a large vol-

ume of clients and using the speed of multi-core systems.

Various new features were developed since NetBSD

6.0 was released, and the upcoming 6.1 release will have

considerable differences regarding their user interface

and to a certain level regarding its capabilities.

2 What’s special about NPF?

Inspired by the Berkeley Packet Filter (BPF), NPF uses

”n-code”, which is conceptually a byte-code processor,

similar to machine code. Each rule is described by a se-

quence of low level operations, called ”n-code”, to per-

form for a packet. This design has the advantage of pro-

tocol independence, therefore support for new protocols

(for example, layer 7) or custom filtering patterns can be

easily added at userspace level without any modifications

to the kernel itself.

NPF provides rule procedures as the main interface to

use custom extensions. The syntax of the configuration

file supports arbitrary procedures with their parameters,

as supplied by the extensions. An extensions consists of

two parts: a dynamic module (.so file) supplementing the

npfctl(8) utility and a kernel module (.kmod file). Thus,

kernel interfaces can be used instead of modifications to

the NPF core code.

The internals of NPF are abstracted into well defined

modules and follow strict interfacing principles to ease

extensibility. Communication between userspace and the

kernel is provided through the library libnpf, described

in the npf(3) manual page. It can be conveniently used

by developers who create their own extensions or third

party products based on NPF. Application-level gateways

(ALGs), such as support for traceroute(8), are also ab-

stracted in separate modules.

2.1 Designed for SMP and high through-

put

NPF has been designed so its data structures can use

lockless methods where suitable and fine-grained lock-

ing in general. 1

Ruleset inspection is lockless. It uses passive serial-

ization as a protection mechanism. The reload of a rule-

set is atomic with minimum impact on the active ruleset,

i.e. the rule processing is not blocked during the reload.

NPF rules can be nested, which is useful for grouping

1For the initial NPF release, some components are using read-write

locks, although they could be lockless using a passive serialization in-

terface. Since this interface was new in NetBSD 6.0, a conservative

approach was taken. As of 6.1, those components have been converted

to be lockless.

and chaining based on certain filtering patterns. Cur-

rently, the configuragion file syntax supports two levels

of groups (having per-interface and traffic direction op-

tions), however there is no limitation in the kernel and

syntax expansion is planned. As of NetBSD 6.1, dy-

namic NPF rules will be supported.

Efficient data structures were chosen for the connec-

tion (session) tracking mechanism: a hash table with

buckets formed of red-black trees. The hash table pro-

vides distribution of locks which are protecting the trees,

thus reducing lock and cacheline contention. The tree

itself provides efficient lookup time in case of hash col-

lision and, more importantly, prevents algorithmic com-

plexity attacks on the hash table i.e. its worst case be-

haviour.

The session structure is relatively protocol-agnostic.

The IPv4 or IPv6 addresses are used as the first set of

IDs forming a key. The second set of IDs are generic.

Depending on the protocol, they are filled either with

port numbers in the TCP/UDP case or with ICMP

IDs. It should be noted that the interface is also part

of the key, as is the protocol. Therefore, a full key

for a typical TCP connection would be formed from:

SRC IP:SRC PORT:DST IP:DST PORT:PROTO:IFACE.

This key is a unique identifier of a session.

Structures carrying information about NAT and/or rule

procedures are associated with the sessions and follow

their life-cycle.

NPF provides efficient storage for large volumes of IP

addresses. They can be stored in a hash table or in a Pa-

tricia radix tree. The latter also allows to specify address

ranges.

2.2 Modular design

NPF is modular, each component has its own abstracted

interface. This makes writing NPF extensions easy. It

also allows easy addition of filtering capabilities for layer

4 and higher. The implementer of a network protocol

does not need to know anything about the internals of

packet collection and disposal facilities. Services such

as connection tracking are provided by a strict interface

- other components may consider it as a black box.

The NPF extensions API will be fully provided with

the NetBSD 6.1 release. Extensions consist of kernel

modules and userland modules implemented as dynam-

ically loadable libraries for npfctl, the NPF control util-

ity. Extensions get configured as rule procedures and ap-

plied on the selected packets. They can take arguments

in a key-value form. Extensions may rewrite packet con-

tents (e.g. fields in the header) and influence their fate

(block/pass).

There is a demo extension: the kernel part in

src/sys/net/npf/npf ext rndblock.c and

src/lib/npf/ext rndblock/npfext rndblock.c

for npfctl. This extension simulates packet loss. The

kernel part file is less than 180 lines long, the npfctl part

is less than 100. Given that the copyright notice is a

significant part of that, the ’administrative overhead’ for

a NPF extension is fairly low.

3 What can it do, at present?

The configuration file syntax is still avoiding to be Turing

complete. In spite of the obvious temptation, it is planned

to keep it that way. The config syntax has changed no-

ticeably between what was released with NetBSD 6.0,

and what will be in NetBSD 6.1. Further change is ex-

pected (of course, only to the better).

As mentioned, NPF is a stateful packet filter for IP (v4

and v6) and layer 4 - TCP, UDP, ICMP and ICMPv6,

including filtering for ports, TCP states, ICMP types and

codes are currently implemented.

Configuration example:

pass in family inet proto tcp \

from $nicehost to $me port ssh

Rules get processed top to bottom as they are written

in the config file, first through the interface specific group

and then through the default group. Processing can be

stopped early by using the tag final in a rule.

Addresses for filtering can be inferred from what is

configured on an interface (own addresses), can be con-

figured in the npf.conf configuration file, or can be fed

into (and deleted from) tables defined in npf.conf using

npfctl table commands.

NPF sidesteps the fragments issues by reassembling

packets before further processing.

NPF supports various address and port translation

variants. In NetBSD 6.0.x, it supports network ad-

dress port translation (”masquerading”), port forwarding

(”redirection”) and bi-directional NAT in IPv4. There

is an application-level gateway (ALG) for traceroute and

ICMP translation; ALGs are provided as kernel modules.

NetBSD 6.0 configuration example:

outgoing NAPT

map $ext_if dynamic 198.51.100.0/24 -> \

$ext_if

port forwarding

map $ext_if dynamic 198.51.100.2 port 22 \

<- $ext_if 9022

Session state (including NAT state) can be dumped to

file in a serialised form.

Packet normalization and logging are available since

the NetBSD 6.0 release. From 6.1 onwards, they will

be provided as NPF extensions. They get configured as

procedures:

procedure to log a packet and

decrease its MSS to 1200 if higher

procedure "maxmss_log" {

log: npflog0

normalise: "max-mss" 1200

}

in an interface group, apply the

procedure to matching packets:

pass out family inet proto tcp flags S/SA \

to $pmtublackholed apply "maxmss_log"

continue to further processing

Rule reload builds a new configuration in the kernel,

and switches from new to old atomically. NPF does not

hold several configurations in the kernel to switch be-

tween. Instead, support for a temporary load with a timer

and automatic rollback is planned.

4 Testing and debugging

As a good citizen of NetBSD, NPF has regression tests in

the automated tests framework. These are implemented

using the RUMP (Runnable Userspace Meta Programs)

framework, which allows to exercise the kernel elements

of NPF in userspace, without having to boot a test kernel

(even in a VM). Regular tools like gdb can be used for

debugging. Unit tests are implemented and available via

the npftest program. Additionally, the program can load

a custom configuration file and process packets from a

pcap file. This allows developers to analyse NPF de-

cisions and state tracking in userspace using a captured

sample. As a result, debugging the problems experienced

in other environments is easier.

Another debugging help is the npfctl debug option,

which dumps the internal representation of a parsed con-

fig, as npfctl would have sent to the kernel, i.e. as disas-

sembled n-code.

5 Meeting users

The NetBSD 6.0 configuration file syntax uses one label

for a network interface, the addresses configured on that

interface and the addresses configured for a specific ad-

dress family on an interface; the meaning was inferred

from context. This turned out to be hard to understand

for humans (even if the software interpreted it just fine)

and was changed for NetBSD 6.1 to explicitly require a

function that takes the interface name as an argument,

e.g. inet($interface) for all addresses configured on

$interface.

Even before NetBSD 6.0 was shipped, the syntax ex-

pressing address and port translations was reworked to

use map. It is bound to an interface, the crossing of which

triggers the translation. By convention, the ”inside” net-

work and optional port definition is on the left-hand side,

and the ”outside” on the right side on the arrow that dis-

cerns the translation direction. This makes configura-

tions easier to read (for the current sample of users).

Users also saw cosmetic issues that were previously

missed, like printing garbage for linklocal scope for

npfctl show.

Further improvement will be necessary in giving use-

ful error messages for syntax problems in the configura-

tion file. Getting feedback from users is very important

to get NPF production ready, to oust the last small bugs

and help identify the most desireable missing bits.

6 Whereto, my lovely?

NPF is still a moving target - there have been ma-

jor changes and feature additions recently. Although

the core APIs of NPF are becoming stable, they are

still subject to extensions and minor changes. There-

fore, when developing 3rd party extensions, it is recom-

mended to follow source-changes@NetBSD.org since

”catching up” with the changes might be necessary.

NPF will also use BPF byte-code (first available in

NetBSD 6.1), and BPF with just-in-time (JIT) compi-

lation likely in NetBSD 7.0. In combination with the

widely used pcap(3) library, it provides the ability to

write sophisticated filtering criteria in an easy, expressive

and very efficient way that is familiar to users.

A GSoC 2012 project produced patches for simple-

case NPT66 (/48 only) and NAT64 (well-known prefix

only). However, these still need to be expanded and inte-

grated, and are therefore unlikely to make it into NetBSD

6.1 due to ”free time” constraints.

Further extensions are likely to arrive. Possible exam-

ples would be extensions for port knocking, traffic ac-

counting and connection rate limiting.

Given interest, addition of further layer 4 protocols is

likely.

Finally, NPF has design provisions to eventually en-

able active-passive and active-active firewall clusters; no

timeline for implementing this exists yet.

