
FreeNAS plugins (everything you ever wanted to know)

John Hixson

john@ixsystems.com
iXsystems, Inc

Abstract

When FreeNAS entered the 8.x series, many people 
were not happy that functionality that previously existed 
was no longer included. Such functionality was mainly 
multimedia focused and targeted at the home user. 
Services such as bittorrent, DLNA and iTunes media 
services are the primary examples. Beginning with 
FreeNAS 8.2.0, a plugin architecture was introduced. 
This architecture allows FreeNAS systems to be extended 
in any way that the user sees fit. The purpose of this 
paper is to describe the technical details of how the 
architecture works so that plugin authors have the 
knowledge to create new plugins. As a working example, 
the transmission bittorrent client plugin will be reviewed.

1 Introduction

FreeNAS is a very powerful open source operating 
system based on FreeBSD. However, once you get 
beyond all the great capabilities it offers, your options for 
extending it become limited. Your choices are using 
FreeBSD's built in package management system, or 
modifying the source code and building your own image.

Packages can be installed using FreeBSD's package 
management system, but care must be taken. You must be 
aware of what paths and files the package management 
system uses as well as the package itself. You have to 
very carefully select whats are used and where all the 
files go because once the system is rebooted, several key 
files can be overwritten or disappear. 

FreeNAS creates memory disks for /var and /etc at 
boot time and copies the contents of /conf/base/var and 
/conf/base/etc to these file systems FreeBSD's package 
tools and ports work with files from /var/db/pkg and 
/var/db/ports. Also, the root file system is mounted read 
only. What this means is that when attempting to install a 
package, most files won't be allowed to be written to the 
system and the record in /var/db will be erased on boot. 
This can of course all be circumvented, but the point is 
that it's an involved process to get working right. 

The major problem with using package management 
is that once you do an upgrade, everything you installed 
will get wiped out. Upgrades to FreeNAS only save the 
configuration and the volumes that are created, 
everything else is wiped clean.

The other option is to hack the build system to 
include the packages you want. This is certainly an 

option. The caveat with this is that you must have a 
FreeBSD system with development tools, an 
understanding of the build system and how it works, 
knowledge of what files to edit, and so on. This simply 
isn't feasible for most people. Most FreeNAS users 
simply aren't technical enough for this. 

To address these problems and more, FreeNAS has 
introduced the plugin system. The plugin system is 
modular, self contained and allows everyday users to 
install programs that fit their needs onto FreeNAS from 
an easy to use interface. This also allows users to use 
their FreeNAS system as more than just a file server.

2 The plugins jail

In order to install plugins on FreeNAS, a plugins jail 
must first be installed, configured and running. A 
FreeNAS plugins jail is a standard FreeBSD jail 
packaged as a PBI and preconfigured with several 
necessary packages that allow the stock plugins to work. 
The plugins jail can be found in the plugins directory 
under the FreeNAS release directory that is being used. 

To install a plugins jail, you must first upload it. This 
can be done from the web interface under services-
>plugins. You must specify where the jail will be stored 
temporarily when it's uploaded. The next step requires 
you to configure a jail path, a jail name, IP address and 
netmask, and a plugins archive path. The plugin jail 
configuration is stored in the database in the table 
services_pluginsjail. The following describes each 
column and what it is used for:

• jail_path – The file system path where the jail 
resides

• plugins_path – The file system path where the 
plugins reside

• jail_mac – MAC address for the jail interface (if 
configured)

• jail_ipv4address – The IPv4 address for the jail
• jail_ipv4netmask – The IPv4 netmask for the jail
• jail_name – The name of this plugins jail

Currently, Only a single IPV4 address is supported. 
In the future, multiple Ipv4 and Ipv6 addresses will be 
supported, as well as multiple plugin jails.

When the plugin jail is uploaded and configured, 
pbi_add is run and the jail is extracted to the  jail_path + 
jail_name. Once this is done, the plugins jail is ready to 

mailto:john@ixsystems.com


be run. When you turn the service on, /etc/rc.d/ix-jail is 
invoked. This script generates the proper /etc/rc.conf 
lines to configure the jail with vnet and allows 
/etc/rc.d/jail to start the jail. Once the jail is up and 
running, plugins are ready to be installed.

3 Installing a plugin

FreeNAS plugins use the PC-BSD PBI9 format. 
plugins are installed using the web interface.  Installing a 
plugin is very easy, navigate to Services->plugins-
>Install Plugin. When a plugin is installed, the PBI 
information is stored in the database in the table 
plugins_plugins which has the following columns:

• plugin_version – plugin version number 
• plugin_enabled – enabled/disabled status
• plugin_ip – fastcgi server IP address
• plugin_port – fastcgi server port
• plugin_arch – i386 or amd64
• plugin_api_version – RPC API version
• plugin_name – name of the plugin
• plugin_pbi_name – PBI file name as uploaded
• plugin_path – where in the file system the 

plugin is installed

Once the PBI information is saved, an oauth secret and 
key are generated record in the services_rpctoken table. 
This table contains the columns:

• secret – the oauth secret
• key – the oauth key

Once the PBI and Oauth information is recorded in 
the database, the following steps occur:

1. The PBI is installed into the plugins jail in 
/usr/pbi/${plugin}-${arch}/

2. The oauth key and secret are written into 
/usr/pbi/${plugin}-${arch}/.oauth

3. The plugin information is written into 
plugins.conf which is included by nginx.conf. 
This tells nginx that all URL's that specify the 
plugin path are to be passed to the plugins 
fastcgi server.

4. The plugins control script is started in the jail 
(/usr/pbi/${plugin}-${arch}/control start). This 
starts the plugin fastcgi server on the IP/port 
combination recorded in the database.

5. The web interface will refresh. The navtree 
makes a request to the plugin's _s/treemenu and 
treemenu-icon methods. The treemenu method 
returns a description of how to display the 
plugin information in the navtree. The treemenu-
icon method passes the icon for the plugin to the 
navtree. Once these methods are called, the 
plugin appears in the navtree menu under 
Services->plugins->${plugin} with the plugin 
icon. The plugin will also appear under the 
Services->plugins menu in the main interface.

4 How they work

When the plugin icon is clicked, django matches the 
plugin URL and sends the request to the plugin fastcgi 
server. Requesting a plugin method is of the form:

• base_url + “/plugins/” + ${plugin} + “/” + $
{method}

The methods that are available are:

• edit – edit the plugin configuration
• treemenu-icon – icon to be displayed in the 

navtree
• _s/treemenu – what/how to display in the 

navtree
• _s/start – start the plugin
• _s/stop – stop the plugin
• _s/status – status of the plugin

Plugins have access to the base system via RPC 
calls. All RPC requests are signed with   the oauth 
credentials given to the plugin at install time. The 
following RPC methods are available:

• api.version() - get the plugin API version
• plugins.plugins.get() - get a listing of installed 

plugins
• plugins.jail_info() - get information about the 

plugins jail
• plugins.is_authenticated() - test if the plugin is 

currently authenticated
• fs.mountpoints.get() - get a listing of available 

files systems
• fs.mounted.get() - get a list of mounted file 

systems
• fs.mount() - mount a file system into the jail
• fs.umount() - unmount a jailed file system
• fs.directory.get() - get a directory listing
• fs.file.get() - get a file
• os.arch() - get OS architecture
• api.test() - verify RPC calls are working

When an RPC request to the base system takes place, 
the following thins happen:

1. An RPC request is built of the form: base_url + 
“/plugins/json-rpc/v1”

2. The RPC request is signed with the oauth 
credentials

3. The RPC request is sent with the requested 
method

4. The method is invoked if the oauth credentials 
are correct and the method exists. The results are 
then returned back to the plugin

The fastcgi server accepts the plugin request, then 
dispatches accordingly. This allows anything that 
anything that can communicate the fastcgi protocol to be 
a plugin, or even to manage plugins. Because of this 
flexibility, plugins can be developed using any language 



or framework one wishes to use. All that is required for a 
FreeNAS plugin to work is that it implement the 
described methods and be packaged using the PBI9 
format.

5 Making a plugin

Currently, making a plugin for FreeNAS is 
somewhat cumbersome. This process is expected to be 
streamlined in coming releases. While there are several 
methods to create a plugin, the one described was used to 
develop the 3 reference plugins included on Sourceforge. 

Documentation for creating PBI files using the PBI9 
format already exists, so only the FreeNAS specific 
portions will be covered. Creating a PBI for FreeNAS 
requires FreeBSD 8.x, PC-BSD 8.x, or FreeNAS 8.2.0 or 
higher. In all cases, pbi-manager and the ports collection 
must be installed. The basic procedure for creating a 
plugin is this:

1. Create plugin directory: myplugin
2. Create resource and scripts directories under this 

directory: myplugin/resources and 
myplugin/scripts

3. Create a PBI configuration file: 
myplugin/pbi.conf

4. Edit the pbi.conf file for your particular plugin 
Documentation for how to do this can be found 
at wiki.pcbsd.org “PBI Module Builder Guide”. 
It's relatively straight forward.

5. If there are any pre/post script needs, create the 
necessary scripts in the scripts directory as 
specified in the PBI module builder guide.

6. Invoke pbi_makeport to create the PBI

At this point, a PBI will have been created. Upload 
the PBI as previously described and it will be installed 
into the plugins jail. It will not be functional from within 
the web interface, but it is ready to be worked on from 
within the jail. This process can be repeated as the plugin 
is refined  and developed.

Next, a control script must be created. The name of 
the script must be “control” and it must be located in the 
plugin directory (/usr/pbi/${plugin}-${arch}/. The 
control script takes 3 arguments, an action verb, an IP 
address, and a port. The purpose of the script is to start a 
fastcgi server on the specified IP address and port. The 
verbs that must be implemented are start, stop and status. 
The start verb starts the fastcgi server on the IP/port 
combination. The stop verb stops the server. The status 
verb exits with 0 if the server is running otherwise it exits 
with 1. This script is called from the main system when 
the plugin is enabled or disabled. 

Once the control script is completed, the interface 
portion of the plugin can be worked on. The job of the 
interface is to export the methods needed by FreeNAS to 
integrate with the web interface as described in section 4. 
The start and stop methods must provide a means by 
which to start and stop the binary the plugin is in control 

of. This also includes any modifications to /etc/rc.conf if 
necessary. The treemenu method simply dumps out 
JSON. The treemenu-icon outputs the plugin icon. The 
workhorse of a FreeNAS plugin is the edit method. This 
is the method that presents the interface for configuring 
the plugin This generally entails saving and restoring 
state and generating and modifying configuration files. 

6 An example - Transmission

When FreeNAS released 8.2.0, three reference 
plugins were also released. They were provided for two 
reasons: to provide the missing functionality that 
previously existed in FreeNAS 7.x, and to document and 
demonstrate how future plugins could be made. 

One of the available plugins is Transmission. 
Transmission is a very popular bittorrent client. It's 
implementation is pretty simple and straight forward so it 
will be used for the example. Since Transmission is built 
into the build system, the build system configuration will 
be covered as well. Reviewing the build system process 
for making a plugin is recommended anyhow for plugin 
authors so they have a better understanding of how 
everything works. Here is an overview of the directory 
layout and key files for the transmission plugin:

${freenas}/nanobsd/plugins/

This is top level directory for all FreeNAS plugins. All 
plugin files are located in this directory. The build system 
will be aware of a plugin once it is placed in this 
directory. For Transmission, the following file is created:

${pluginroot}/transmission

This is the nanobsd configuration file for Transmission. It 
sets up the nanobsd environment for the Transmission 
build and provides function(s) for doing so. Since 
nanobsd is being used for the plugin build, a bit of 
trickery is done here. All of the nanobsd functions are 
overridden with stub calls except the last_orders() 
function. This is the function that makes the actual call to 
pbi_makeport and does the plugin build.

${pluginroot}/transmission_pbi/

This is the Transmission PBI directory. All plugins must 
have a PBI directory. Within this directory, two 
subdirectories must exist: scripts/ and resources/. A 
pbi.conf file must also exist. 

${transmission_pbi}/pbi.conf

This file tells pbi-manager how to build Transmission. It 
contains information about the plugin such as the port(s) 
to be built, the icon(s) to be used, the make options for 
the binaries, etc.

${transmission_pbi}/resources/

This directory contains the bulk of the plugin interface. It 



can be structured however the plugin author chooses. 
Since Transmission uses django, the django application 
resides in the directory along with an assortment of other 
scripts and programs. 

${transmission_pbi}/resources/control.py

This is the transmission fastcgi server control program. 
As discussed previously, this program has three 
responsibilities: to start the fastcgi server, stop the fastcgi 
server and report the status of the fastcgi server. The start 
and stop methods also start and stop the django web 
server application. The django application exports all the 
required hooks that FreeNAS requires to interface with 
the plugin. A wrapper script that calls control.py is also in 
this directory. This “control” wrapper is the only 
mandatory file that needs to be known by the base 
system.

${transmission_pbi}/transmission

This is the RC script for transmission that controls the 
daemon. It's just like any other RC script that FreeNAS 
uses. 

${transmission_pbi}/resources/tweak-rcconf

The job of this script is to modify /etc/rc.conf to enable or 
disable transmission.

${transmission_pbi}/scripts/

This directory contains hooks for different stages of the 
PBI build process and installation process. The possible 
scripts are pre-install.sh, post-install.sh, pre-portmake.sh, 
post-portmake.sh and pre-remove.sh. Pre-install.sh 
allows you to do customizations to the system prior to the 
plugin being installed, such as adding users and groups. 
Post-install.sh is run immediately after the plugin is 
installed. Some typical post install operations are 
database initialization and migrations. Pre-portmake.sh 
and post-portmake.sh allow you to do operations before 
and after port compile. Pre-remove.sh is run prior to 
plugin removal. Operations typically done by pre-
remove.sh are user and group removal.

The other files in ${transmission_pbi}/resources are 
default.png, freenas and transmissionUI. Default.png is 

the default icon for the PBI. Freenas is a file that contains 
the plugin api version. TransmissionUI is the django 
application.

${transmission_ui}/freenas/

This is the django application. Under this directory are 
the typical django model, form, view and url files. In the 
urls.py file, the exported methods that FreeNAS requires 
are very visible and demonstrate what needs to be made 
available for a FreeNAS plugin to be functional. 

To build the transmission plugin, run the command: 
${freenas}/build/do_build.sh -t plugins/transmission. 
This will first create a ${freenas}/sbin directory and 
install pbi-manager into it. When pbi_makeport is 
invoked, it will compile a FreeBSD 8.x world and install 
it into a temporary directory which will later be tarred up 
and saved for future compilations. Once a world directory 
is ready, the ports that are needed to compile the plugin 
get compiled and installed. Any provided scripts get ran 
and then the PBI is made and placed in
${freenas}/${plugin}/${arch}/${plugin}.pbi. The plugin 
build is complete at this point. 

To test and verify transmission works, upload the 
Transmission plugin through the FreeNAS web interface 
as previously described. Navigate to Services->plugins-
>Transmission from the navtree. Click on it and there 
should be an edit screen. There are default values filled in 
already but these can be modified and saved. Save the 
configuration and go to Services->plugins->Transmission 
from the main interface and turn the slider to on. At this 
point you can grab any torrent file, place it in the 
directory specified in the watch directory and watch it get 
downloaded in the download directory. Success!

8 Conclusion

FreeNAS plugins allow FreeNAS to be extended in 
ways anyone sees fit. They are very powerful in their 
flexibility and allow plugin authors to make a FreeNAS 
system into everything from a multimedia server to a 
print server. The purpose of this paper is to explain the 
plugin architecture so that more developers and people 
knowledgeable enough can make more plugins  Happy 
hacking!

 


