
64bit SMP NetBSD OS Porting

for TILE-Gx VLIW Many-Core Processor

Toru Nishimura

Sanctum Networks, Pvt. Ltd.

nisimura@sanctumnetworks.com

Abstract
Many-core processor  is  an attractive platform to run a general  purpose OS like NetBSD. We, a team in Sanctum 
Networks,  ported NetBSD 6.0 to  64bit  VLIW many-core processor  named TILE-Gx.   In  this  paper  we introduce 
distinctive features  of  TILE-Gx in some depth as the product  remains  less  known in our engineering community. 
NetBSD porting was made well and smooth than anticipated.  We realized  that NetBSD 6.0 is a mature SMP OS which 
provides streamlined kernel structure and offers rich set of kernel API specifically designed for large degree SMP, 
beyond 32 processor, configuration.   As a part of conclusion we mention about some of TILE-Gx NetBSD application 
area which we're willing to build.

1.  Project outlook and time line
This  porting project  was initiated  in  mid June 2012 at 
Tokyo.  The goal was to achieve full SMP capabilities on 
the  36  core  TILE-Gx  processor  and  understand  the 
suitability of the TILE architecture for various application 
development.

– our porting target  is  Tilera Empower 1U computer 
with 36 core TILE-Gx processor.

– development  environment  with cross  compiler  was 
made at early July 2012.

– geographically  separated  two  GIT  repositories  in 
push-pull synchronizing.

– Japan  side  hosts  are  in  Sakura  VPS  and  Amazon 
EC2.

– kernel image linking completed in late July 2012.  It 
contained a lot of stab code guaranteed not  to work.

– single core kernel was successful in running ramdisk 
sysinst program at 2012-10-30.

– since then, kernel stability, GbE driver and SMP has 
been persuaded.

– as of March 2013 porting project is going active. A 
number  of  functionalities,  in  particular  ones  for 
TILE-Gx unique features, are under development.

2.  TILE-Gx features
TILE-Gx design was invented by an MIT professor, Dr. 
Anant Agarwal. It's the latest incarnation of a long time 
research since 1980s.   TILE-Gx is  the third generation 
product.  There are two successors, TILE64 and TILEPro 
which are based on the same TILE architecture approach. 
Following  to  two  32bit  designs,  the  third  generation 
model is made 64bit processor.

TILE  architecture  emphasizes  the  scalability  and  low 
power with a unique on-chip inter-connection technology. 
TILE-Gx product family has 9 ~ 100 core configuration. 
Each of core is  laid out  in tiles-on-wall  fashion.  Core 
runs  at  1.2GHz clock.   Under  work  load  with  modest 
network  activity  36  core  TILE-Gx  is  said  to  achieve 
25-30W power consumption in total.

TILE-Gx is a 64bit processor.  It  has 64bit integer and 
64bit  floating  point  operation,  64bit  register  and  64bit 
address  space  by  64bit  pointer.   These  simple 
characteristics are quite familiar to any of plain old UNIX 
programmers  since  the  time  when  MIPS  R4000  was 
introduced at early 1990s.



2.1.  Instruction set feature
TILE instruction set architecture is 3 way VLIW.  Two or 
three instructions are in a single 64bit word which is in 
turn  called  “instruction  bundle.”   TILE  can  run  up  to 
three instructions simultaneously.

TILE-Gx  has  sixty four  64bit  register  file.   Table  2-1 
shows  register  definition.  58  of  them,  including  two 
hardwired zero registers, are general purpose. It contains 
thread  pointer  tp  register  to  facilitate  thread 
programming.   It   shows  ABI  to  define  the  common 
register usage program ought to follow.

register mnemonic type usage

0 - 9 r0 -r9 saved by caller arguments/return values

10 - 29 r10 - r29 saved by caller “temporary”

30 - 51 r30 - r51 saved by callee “safe across call”

52 r52 saved by callee frame pointer

53 tp dedicated thread pointer

54 sp dedicated stack pointer

55 lr saved by callee return address

56 sn always zero

57
58
59
60
61
62

idn0
idn1
udn0
udn1
udn2
udn3

onchip  network 
communication

I/O Dynamic Network 0
I/O Dynamic Network 1
User Dynamic Network 0
User Dynamic Network 1
User Dynamic Network 2
User Dynamic Network 3

63 zero always zero
Table 2-1 register assignment for TILE-Gx ABI

Note  that  TILE  offers  a  rather  large  number  of,  10, 
arguments in register for function call.  The return values 
are placed in the same set of register for arguments.  This 
means r0 register content  will  be destroyed quite often 
when a function exits.  Better to remind it as one of TILE 
debugging tips.

Six registers  are reserved for  inter-core communication 
via  on-chip  network  named  UDN  and  IDN.  These 
registers  work  as  FIFO  ports  much  like  FSL  “fast-
simplex-link”  in  MicroBlaze  processor.   Reading  from 
empty register or writing on occupied register may cause 
the processor to stall until condition meets.

Registers  are shared  resource among VLIW concurrent 
execution flow. Each subroutine has a single entry point 
and a single exit.  No parallel subroutines are in action. 
Register  conflicts  in  parallel  execution  is  considered 
program error.  It brings undefined / unexpected values in 
register  file.   Register  conflict  avoidance  is  the 
programmer's responsibility.

TILE instruction has two different formats; X-format for 
2 instruction in a bundle and Y-format for 3 instruction in 
a bundle.  Basic arithmetics is done in 3 operand form. 
As  register  file  is  64  in  size,  3-operand  instruction 

requires 18bit = 6 x 3 for register designation plus some 
more for opcode.  3-in-1 64bit bundle is considered rather 
tight  encoding,  however,  contributes instruction density 
much. 2 register arithmetics have signed 8bit immediate 
or signed 16bit immediate value.  The latter instruction 
belongs  to  2-in-1  bundle  X-format  as  it  needs to  have 
longer encoding. Unoccupied instruction slot in a bundle 
is filled with NOP which works as a flowing bubble in 
execution pipeline.

The most  notable difference  from conventional  CISC / 
RISC instruction set is the lack of “register indirect with 
offset”  addressing  mode.   TILE  has  no  “LW  R3, 
0x178(R2)” style memory access.  This means that local 
variable on stack and/or (C language) struct member must 
be accessed through an explicit  pointer  in  a  temporary 
register to refer the target address.  It's a stark contrast to 
the case where “register indirect with offset“ addressing 
mode  can  achieve  load  /  store  operation  with  “base 
register + immediate value offset” very handy for local 
variable and struct member.  This is another tip for TILE 
programming to remember.

2.2.  Other useful instruction
TILE instruction set has an orthogonal set of atomic math 
/ lock instructions.

fetchadd Atomic addition

fetchand Atomic logical AND

fetchor Atomic logical OR

cmpexch compare-and-swap
Table 2-2 atomic instructions

All of them have two variations for 8byte operation and 
4byte  operation.   These  instructions  are  comfortably 
useful  to  implement  NetBSD  atomic_ops(3)  routines. 
They are well defined set of MP-safe atomic operations 
and widely used in SMP NetBSD kernel construct and/or 
parallel programming library like pthread(3).

Cmpexch instruction is for CAS “compare-and-swap” or 
TAS  “test-and-set”  operation.   It  works  like  as  Intel 
cmpxchg instruction.  Note that it's not based on LL/SC 
synchronize model found in MIPS, Alpha, PowerPC and 
ARM64.  TILE  cmpexch  works  with  accompanying 
“CmpValue”  SPR register.   Locking  primitives  can  be 
implemented with it in usual manner.

TILE-Gx has rich set of DSP and SIMD instruction.  It 
also  has  some  fancy  instructions.   A set  of  bit  field 
operations,  CLZ  (count-leading-zeros)  and  CRC32 
polynomial math for hashing / checksum and so on.

TILE-Gx  floating  point  math  does  not  have  dedicated 
register set.  FP  instruction uses GP registers for source / 
destination operands.



2.3.  Address space
TILE-Gx has 42bit effective address bit out of 64bit VA 
virtual  address  pointer.   Virtual  address  is  separated  in 
upper 2TB space and  lower 2TB space.  There is a large 
void in between.  VA[63:41] is either of all-0 or all-1, that 
is, sign extended from VA<41>  value.

TILE-Gx has no MIPS KSEG0 / KSEG1 / XKPHYS like 
address  segment  exists  to  distinguish  cache  nature. 
Software is in charge of address inhabitation and cache 
nature control with help of smart TLB usage.

2.4.  Layered protection
TILE architecture provides four level protection scheme. 
Level  is  ranging  from  0  least  protected  to  3  most 
protected.  It allows to build layered protection domains 
which run protected programs in each level. 

PL0 User applications

PL1 Guest OS

PL2 Tilera Hypervisor

PL3 “ virtual  machine  monitor”  (who  knows  what 
really it is.)

Table 2-3 TILE protection level

Program runs in low order protection level is inhibited to 
touch resources in hight order level.  Each core runs one 
of  four  protection  level.   Current  protection  level  of 
individual core is called CPL.  Control transfer is done by 
executing dedicated instruction;  swint0,  swint1,  swint2, 
swint3. NetBSD uses swint1 instruction for system call to 
be issued by applications programs.

There  is  a  large  set  of  SPR registers.   mfspr  /  mtspr 
instructions  operate  them.   SPR number  is  encoded  in 
14bit.  Most  of  SPR  registers  have  their  own  ML 
“minimal protection level” value to arbitrate which level 
(0 ~ 3) of program can access to.  MPL is the basis of 
layered protection for TILE runtime environment.

2.5. TLB and TSB
TLB plays a central role in TILE architecture.  In TILE 
architecture TLB dost not just make VM virtual memory 
possible  but  also  realizes  chip-wide  global  cache 
coherency. TILE TLB entry is designed to be multi-core 
aware.  TLB entry optionally holds the location of core in 
chip (in X-Y coordinate) to track and identify how TLB 
entry to tell VA-PA mapping is tied with a specific core.

Like  as  most  of  modern  processors,  TILE  TLB  is 
software managed.  TILE-Gx has independent TLB stores 
for  instruction  and  data;  16  entry  iTLB  and  32  entry 
dTLB.   Note  that  TLB  is  a  shared  resource  among 
programs which run in different protection domain.  The 
42bit  VA  space  is  also  shared  among  them.  Tilera 
Hypervisor  reserves  some  of  TLB entries  for  its  own. 
Remaining is free for guest OS and application programs 

to use.

The TLB management strategy is modeled after SPARC 
processor.   TILE uses  “TSB” and “TTE” nomenclature 
for the very same purposes.

TSB “translation store buffer” is a software extension of 
TLB.  TSB holds a super set of TLB in main memory.  It 
works  as  a  staging  area  to  inject  TLB  entry  into 
processor's iTLB or dTLB.  HV is in charge for TLB miss 
handling.  It always consults with TSB content in action. 
Guest OS can only operate TSB store.  As TLB is one of 
highly  sensitive  shared  resource  among  various 
programs, guest OS can not make access TLB.  TSB is 
normally  reserved  inside  protected  guest  OS  memory 
area.  TILE TSB is a unified one to hold iTLB entries and 
dTLB entries.  The approach is different from SPARC64 
which has iTSB and dTSB in parallel.  TTE “translation 
table entry” is the software defined intermediate format 
of TLB entry.

On  TLB  miss  HV  takes  control  to  run  TLB  refill 
operation.  It  searches first  the offending TLB entry in 
TSB store.  If the target entry is found, HV injects it to 
either of  iTLB or dTLB and complete refill operation.  If 
HV finds TSB has no such entry, then it posts a request 
for  guest  OS  to  come  in  and  solve  this  “TSB  miss” 
condition.  Guest OS, in turn, responds to the TLB miss 
exception  identifying  it  as  genuine  access  error  or 
recoverable  fault  condition.  The  rest  of  operation  is 
identical  to popular software managed TLB processors. 
If guest OS finds the exception is true TLB refill case, it 
adds the offending TLB entry into TSB store and returns. 
HV will  take  care the refilling.  If  guest  OS finds  the 
exception access error or protection violation, it performs 
its way to handle the cases.

TILE has ASID “address space identifier.”  ASID is to 
improve TLB hit ratio, that is, better VA->PA translation 
efficiency.  It's as normal as and identical to other ASID 
processors.  TILE ASID is 8bit, offering 256 individual 
address  spaces  to  be  distinguished  for  TLB  lookup 
operation. Some literatures incorrectly mention that ASID 
is an extension of VA, like saying it realizes concatenated 
8 + 42 address bit.  ASID is to virtualize TLB, or to make 
imaginary multiple TLB stores which are numbered and 
iterated  by  ASID.   ASID  demands  a   smarter  VM  to 
operate.  This topic will be discussed in a later section.

As  other  processors  do,  TILE processor  handles  many 
kinds  of  interrupt  /  exception.   Device  asynchronously 
posts variety of requests and different types of exception 
happens while a processor is  in action.  TILE uses IPI 
“inter-processor  interrupt”  not  only  for  pure  inter-
processor  messaging,  but  also  for  I/O  device  interrupt 
notification.   As  TILE  integrated  on-chip  devices  are 
located apart  of core and notification comes across on-



chip  network,  it'd  be  reasonable  to  use  IPI  laminating 
many into a single form.

2.6.  iMesh on-chip inter-connect

Processing core is laid out in a tiles-covering-wall fashion 
with  mesh  shape  inter-connect  to  couple  each  other. 
Inter-connect  has  X-Y /  street-avenue  like  layout.   At 
each crossing is an independent switch processor to tie a 
computing node with the entire switch network.  Tilera 
names it iMesh technology.

Switch processor is 16bit RISC to run low latency and 
high  bandwidth  switching  function  through  limited 
number of signal connections.  Besides of 4 paths for N, 
E,  S  and  W  directions  to  neighboring  switches,  one 
switch  data-path is  coupled  with  processor's  L2  cache. 
Data stream travels  through L2 first,  then either  of  L1 
iCache or dCache reaching to a processing core. 
The inter-connect offers UDN “User Dynamic Network” 
and IDN “I/O Dynamic Network” for general purpose on-
chip streaming and messaging communication.  Total  6 
register  of  TILE-Gx  processor  are  assigned  to 
accommodate the ease of programming.

It should be reminded that iMesh does not implement nor 
enforce any kind of “smart network topology.”   There 
was a number of massively-parallel multi-processor super 
computers built from time to time.  All of them more-or-
less  persuaded  a  smarter  topology for  processor  inter-
connect to maintain low-latency and high bandwidth.  

Notable examples are Cray T3D and SiCortex SC5832. 
T3D had a 3-dimensional “torus” graph topology to make 
Alpha processors tightly coupled each other.  SC5382 had 
“Kautz graph” topology to inter-connect 6-core MIPS64 
processor with the help with built-in DMA engine to talk 
with L2 caches and I/O devices.

In  TILE  architecture  on-chip  inter-connect  is  software 
defined.   Switch  processor  can  program  the  network 
topology to  adapt  varying demands.  In this way, TILE 
architecture  can  maintain  the  flexibility  and  the 
scalability in parallel. It's unlikely “topology optimized” 
super computers can achieve both natures in balance.

iMesh  API is provided to make finer control  over on-
chip network.  Cores can be partitioned into groups which 
work  parallel  as  if  they  are  islands.   This  feature  is 
implemented by switch network programmability

With  help  by  “topology-aware”  and  “cache  attribute 
aware” TLB entries, iMesh acts a central role for cache 
coherency.

2.7.  Cache design and feature

Each core has 32KB iCache, 32KB dCache and 256KB i/
d  combined  L2  cache.   Either  of  L1  cache  has  VIPT 

“Virtual Index and Physical Tag” nature.

L1 iCache 32KB, 2 way associative, 64B line size.

L1 dCache 32KB,  2  way  associative,  64B  line  size, 
write-through.

L2 cache 256KB,  i/d  combined.  8  way  associative, 
64B line size, write-back.
Table 2-4 cache characteristics

Some TILE processor literatures mention to “coherent L3 
cache.”  It's somehow imprecise.  The L3 functionality is 
achieved by a group of L2 cache.  The scheme is called 
“cache homing.” Let us start the explanation.

TILE L1 cache is inclusive to L2.  L1 holds subset of L2 
contents  at  any  moment.   L2  miss  happens  when 
offending cache line data is not found in L2.  Core asks 
about the missing cache line data to “neighboring cores” 
which are grouped by HV for a single OS instance.  If 
found there, cache line data is transferred to requesters L2 
cache.

Foreign  L2  caches  work  as  an  extension  of  local  L2 
cache. In  other words,  a group of cores share their  L2 
cache contents each other.  This scheme is named “cache 
homing”  and  Tilera  calls  the  group  of  L2  cache  as 
“coherent L3” cache.  36 core Gx processor has “9MB 
coherent L3” = 36x 256KB L2.

Cache lines can be populated sparsely among different L2 
to improve the cache efficiency.  L3 cache homing is one 
page attributes.  It's controllable by per-page basis.

3.  TILE-Gx on-chip devices

integrated multiple DDR memory controller
2 controllers in 36 /16 core models, 1 in 9 core model. 
TILEPro, the successor of TILE-Gx, 64 core model had 
four  DDR2  memory  controller  on  chip.   With  dual 
controller  configuration,  memory  can  be  driven  in 
interleaved fashion.

mPIPE packet classifier
It's  a programmable intelligent  packet  engine.  It  offers 
“frame  parse”  function  to  run  “sieve-to-forward” 
classification on incoming Ethernet frame stream at line 
speed.   mPIPE  is  tightly  integrated  with  GbE  /  10G 
Ethernet network interface.

– 4x 10G ports are available in 36 core model.
– Each  port  can  be  reprogrammed  to  host  4x  GbE 

network interface.
– GbE-only  ports  are  also  available  in  16  /  9  core 

model.

mPIPE has local buffer memory to handle incoming and 
outgoing  Ethernet  frames.   mPIPE  can  perform  load 



balancing to distribute ingress frames to cores.

Core  binds  mPIPE  device  register  set  to  a  particular 
virtual address with a designated dTLB entry for control. 
mPIPE in turn  holds  an  I/O TLB entry to  access  data 
which resides in target (~accelerating application or guest 
OS)  address  space  so  that  it  can  understand  VA->PA 
translation for frame data and accompanying descriptors.

mPIPE has its own 32bit instruction set.  A special GCC 
toolchain is provided to program it.

– two or three operand instruction.
– 32x  32bit  register  file;  22  of  them  are  general 

purpose.
– Private SPR registers with mfspr and mtspr to use.

MiCA crypto and compression engine
It's  a  standalone  computing  processor  populated  inside 
TILE-Gx.  Multiple MiCA processors are on a single Gx. 
MiCA can copy data while encrypting and compressing 
operation in action. It's a streaming operation.

Core  binds  MiCA device  register  set  to  a  particular 
virtual address with a designated dTLB entry for control. 
MiCA in  turn  holds  an  I/O  TLB entry  to  access  data 
which  resides  in  target  address  space  so  that  it  can 
understand VA->PA translation for crypto / compression 
data. 

Conventional I/O devices

There  are  some  conventional  I/O  devices  like  PCIe, 
USB2.0 and I2C/SPI in our porting target computer.

PCIe  controller  works  in  either  root-complex  (host)  or 
end-point (device) mode.   USB2.0 is used for multiple 
purpose.   It  works  as  virtual  console  while  in 
development and debug.  It can also inject a binary image 
to  Gx processor  to  run.   The binary image consists  of 
boot  programs,  HV image and  guest  OS in predefined 
format.

4.  Tilera Hypervisor
HV utilizes TILE protection level feature.  Guest OS has 
heavily  limited  access  to  SPR registers.   Only  handle 
number of SPR registers allowed to used by Guest OS.

HV is populated at the 1MB area in the upper 2TB space 
with a hardwired TLB entries.

HV  has  great  control  over  the  entire  TILE  processor 
complex.  HV makes cores into groups which are manged 
in M x N rectangle shape to form OS instance.

HV assigns I/O devices to particular instances with I/O 

TLB entries.   Tilera calls  the scheme MMIO “memory 
mapped IO” scheme while SPARC names it “IOMMU.”

HV allows  several  guest  OS'es  to  run  simultaneously. 
Device and core grouping is defined a HV configuration 
at the machine startup.  Because of it,  HV is yet  to be 
improved as flexible as what Xen can do in these days.

Two serial ports are provided in Gx processor.  HV can 
dynamically  bind  one  of  serial  ports  to  running  OS 
instance as it console.

BME “bare metal environment”

BME  is an API to build “light weight monitor” which 
runs designated core(s) run special purpose “driver” for 
data-plane  processing.   In  general  any  BME  program 
needs accompanying fully-featured OS, like Linux, as a 
control plane to manage the whole software complex.

iMesh messaging facility API is used by control  OS to 
communicate with BME programs which run on separate 
core(s).

Several code examples are provided by Tilera;
– one  TILE  core  runs  “encryption  server”  on  BME 

while  Linux  as  “client”  which  receives  the  results 
from BME. In this example data transfer is done in a 
share  page  with  help  of  UDN messaging  between 
two.

– A number of Linux process get private cores to run 
and communicate each other with UDN messaging 
and shared pages.

5.  NetBSD/tile

This port is based on NetBSD 6.0 STABLE code set.  It's 
a 64bit SMP kernel and 64bit userland. The kernel runs as 
a guest OS conjunction with Tilera Hypervisor.

NetBSD/tile uses GCC 4.6.3 ported by Tilera. We have 
been  using  it  as  it  is.   As  GCC 4.5  is  still  in  use  in 
NetBSD 6.0 code set, we integrated GCC 4.6.3 to start.

64bit pmap was implemented from scratch.  It's modeled 
after Alpha pmap.  Although TILE-Gx offers 13 different 
page  sizes,  HV  employs  much  humble  page  size 
selection.  We chose 64KB page for NetBSD/tile as it is 
parallel to Tilera Linux VM implementation.  The virtual 
address partitioning is “10 + 8 + 8 + 16.”

NetBSD/tile utilizes SMP ready NetBSD6 kernel internal 
as  large  as  possible.   NetBSD5  introduced  much 
sophisticated  kernel  constructs  and  API sets  which  are 
effective  and useful  for  scalable SMP OS.   Since  then 
gradual streamlining has been done for fore-running SMP 



NetBSD ports.  Now NetBSD6 is a mature platform to 
make a jump start for fresh SMP porting.

The following is the typical set of useful SMP API;
– atomic_ops(3)
– kcpuset(9)
– xcall(9)
The  first  group  must  be  implemented  in  early  kernel 
porting stage. In most cases they have to be written with 
assembler code to be best suited for particular processor 
nature.  The latter two are pure software construct written 
in plain C code.

Parallel  programming  model  is  NetBSD  pthread. 
NetBSD  pthread  is  well  organized  to  adapt  various 
processors  with  minimum  effort.   We  did  not  make 
particular  modification for  TILE-Gx support.   It  works 
just like as any other pthread implementations like one in 
Tilera Linux.

Very limited number of assembler files were written so 
far.  One one for kernel; it's “locore.S”  The file contains 
4 well define major routines;
– CPU startup for primary core and secondary cores.
– Exception entry / dispatch / return
– CPU context switch
– fast software interrupt dispatch / return

Other  assembler  files  are  for  libraries  and  a  few 
application program like rtld(1).  The following is the list 
of major TILE-Gx dependency in concern.
– src/common/lib/libc/arch/
– src/lib/libc/arch/
– src/libexec/rtld/arch/

5.1.  Key design decisions

In this section we describe concisely about some design 
decisions to make a port realized.
– struct trapframe, struct switchframe and struct pcb.
– UPACE to hold kernel stack and struct pcb.
– pmap(9) to interface processor with NetBSD VM.
– Exception  and  interrupt  handling  to  comply  target 

processor design intent.
– IPI “inter-processor  interrupt” which is  essential  to 

make SMP possible.
struct trapframe is a snapshot image of runtime context. 
One trapframe is always created at the high end address 
of USPACE.  Actual kernel stack starts just below of it to 
grow downward.  The reserved trapframe area is for user 
process context.  Whenever user process gets interrupted 
by exception or device notification, the trapframe is to 
record the user context to resume later.  This area is also 
used for system call.  While in kernel mode, kernel gets 
interrupted  by the  same  reasons  as  user  mode  process 
does.  At the occasion, trapframe is created and pushed on 

kernel stack.

TILE architecture has 64x register file.  8 out of them are 
not  a part  of  process  context  and to  be excluded.   We 
chose 64x 64bit = 512B size anyway for struct trapframe. 
In vacant fields we place some extra contexts for process 
to  retain.   They  are  exception  return  address,  status 
register  value  at  the  time  when  exception  happened, 
offending exception type and a value of a certain SPR, 
“CmpValue” indeed, for cmpexch instruction.

struct switchframe is for CPU context switch.  NetBSD 
defines two context switch routines.  cpu_switchto(9) and 
lwp_return(9) are the routine to perform context switch. 
TILE architecture has a large set of caller-saved register. 
Our switchframe is 25x 8B = 200B in size.

struct pcb is one of longest surviver among UNIX kernel 
primitives.  It got smaller than used to be since the way 
how to run context switch made smarter.  Our struct pcb 
is  as small  as just  to hold struct switchframe and a bit 
extra.

USPACE size is 64KB as aligned with NetBSD/tile page 
size.

5.2.  ASID management

ASID  management  is  modeled  after  the  way used  for 
NetBSD/alpha  and  NetBSD/mips.   In  this  section  we 
explain it in larger degree.

Kernel has a variable for “ASID generation number” to 
make sure a unique ASID assigned for running process in 
processor.   It's  a  central  idea.  Our  ASID  management 
algorithm works in this way.
– pmap_activate(9),  one  of  NetBSD  kernel  API, 

switches processor's current ASID value whenever a 
new process is ready to take control.

– Switching current ASID is a light weight operation 
for OS as it eliminates the necessity of TLB flush at 
every context switch.  ASID-less processors need to 
perform the whole scale TLB invalidation to discards 
all entries at every context switch.  As TLB works as 
a cache for VM address translation, TLB flush hearts 
severely  TLB  hit  ratio  spoiling  VM  performance. 
ASID-aware processors just  need to switch current 
ASID value.  Changing processor current ASID can 
be considered to switch imaginary TLB store which 
exists for each ASID value.

– Every  new  born  process  has  no  ASID  assigned. 
pmap_activate()  chooses  new  one  which  is  never 
allocated  so  far  and  assign  it  with  the  process. 
pmap_activate()  also  records  the  current  ASID 
generation number in the process's pmap store.

–  ASID is a small number to count only up to 255.  If 



pmap_activate() finds the 8bit gets exhausted, then it 
bumps ASID generation number in a kernel variable 
by 1 and chooses a new ASID wrapped to the least 
available number (normally 1 as ASID 0 is reserved 
for NetBSD kernel pmap).  On this occasion, kernel 
makes full scale TLB invalidation to discard all TLB 
entries.

– Whenever pmap_activate() is about to switch current 
ASID, it checks ASID generation number in kernel 
variable  matches  the  process's  generation  number 
recorded at ASID creation.  If  they differ, it means 
the  process's  ASID  is  no  longer  valid. 
pmap_activate() selects and assigns a fresh ASID for 
the process to run recording current ASID generation 
number too.

Given  any moment  every running  process  has  its  own 
unique ASID.   The generation number scheme reduces 
the  necessity  of  full  scale  TLB  invalidation  in  great 
degree. TLB flush only happens when ASID range gets 
run out and ASID generation number is to be bumped.

5.3.  TLB shootdown

TLB shootdown is  the  essential  operation in  any SMP 
kernel.  Like as processor cache, TLB is a local resource 
to processor core.  The way to invalidate local cache or 
local  TLB  is  provided  by  a  certain  mechanism.   In 
general invalidating remote TLB is as hard to archive as 
invalidating remote cache.

In  SMP  system,  TLB  invalidate  operation  must  be 
propagated to multiple cores which have been running a 
particular  process.   Process's  pmap  must  maintain  a 
“processor set” to track which cores have run it.   Here 
goes the explanation of remote TLB shootdown by ASID 
bump;

When pmap(9) detects the necessity to invalidate one or 
more TLB entry of particular process, kernel needs to run 
invalidate operation both for;
– the “local” core which happens to run the kernel on 

behalf of pmap() at the very moment, and
– all of “remote” cores which the process's pmap() are 

aware of.
The  latter  operation  is  named  “TLB shootdown.”   It's 
implemented with IPI.  It triggers a remote core action by 
inter-core message.  TLB shootdown logic can be built in 
with help of xcall(9) “cross call” kernel API.

A smart  ASID  management  can  achieve  remote  TLB 
invalidation with a small cost.
– mark  ASID  in  offending  process's  pmap()  store 

“unassigned.”
– broadcast  a  xcall(9)  message  to  remote  cores 

triggering IPI.
– When one of cores is about to run the process in the 

next  scheduling,  pmap_activate()  will  choose  and 
assign a fresh ASID the offending process.  The stale 
TLB entry with abandoned ASID gets invalidated at 
once.

5.4.  Useful SMP facilities in NetBSD6

SMP NetBSD kernel provides the way to manage CPU in 
finer gain. There are less known set of useful commands. 
Let us mention about them in brief.

cpuctl(8)  ...  try  “/usr/sbin/cpuctl  list”  on  your  modern 
Intel computers. It shows the list of CPU state which tells 
online / offline.

prset(8) ... try “/usr/sbin/prset -p” on your modern Intel 
computers.  It can create arbitrary number of  “processor 
set” which is bound with any process.  CPU affinity is 
made  possible  by  processor  set  binding.  Would  be 
possible  to  bind a processor  set  with a  kthread (kernel 
thread) which runs specific  kernel  subsystem like GbE 
and/or disk drivers.

schedctl(8)  ...  try  “/usr/sbin/schedctl  -p  1”  on  your 
modern Intel computers.
– It  assigns  one  of  predefine  scheduling  policy  to  a 

process.   It  replaces  nice(1)  and  renice(8)  priority 
control commands.

– Three  difference  scheduling  policies  provided  by 
NetBSD so far.

– Time-sharing  which  follows  the  tradition  UNIX 
semantic used for long time.

– First-in, First-out
– Round-robin

5.5.  Future development

This project is active.  Here we try to make a summary 
about missing functionalities and future development in 
some arbitrary order.

Soon to use TILE-Gx native FP instructions.  Currently 
the entire  NetBSD including userland is  made with  “–
DSOFTFLOAT” compile option.

Drivers for some conventional  PCIe devices like SATA 
and/or  100M  Ethernet  NIC.   Currently  whole  system 
code image is  injected with USB debugging facility to 
run NFS diskless configuration.

iMesh communication API for NetBSD.  It remain under 
research.  For now there is no provision to utilize iMesh 
programming.

MiCA integration with a proper API.  NetBSD kernel has 
pcu(9)  “per-CPU-unit”  framework.   It's  for  the 



encapsulation  of  CPU's  hardware  context  to  save  / 
restore.   It  handsomely  covers  the  cases  beyond  the 
general purpose register.  The typical usage of pcu() is to 
manipulate FPU register set.  We're considering whether 
pcu()  can  integrate  multiple  MiCA units  to  NetBSD 
kernel in sane manner.

NetBSD/xen  allows  dynamic  attach  /  detach  maneuvre 
while  kernel  is  up-running.  It  allows  core  to  attach  / 
detach  dynamically  and  allows  block  device  attach  / 
detach dynamically. We assume it'd be some difficult to 
implement  similar  functionality  in  TILE,  however,  it'd 
worth persuading the way to make them possible.

We're aware of Tilera HV has no provision to startup & 
tear down “targeted” core while up-running.  HV source 
code is disclosed as a part of Tilera MDE development 
package.  It's said that HV can be extended for customer's 
own needs.

LLVM transition from GCC4 is recognized mandatory as 
it would exploit the potential of TILE VLIW nature.

6. NetBSD TILE-Gx applications

We  focus  on  compute-intensity  markets.   We're 
considering to engaged in SDN, VLDB search engine and 
desktop HPC.

SDN “Software Defined Network”

It's  the  third  wave  of  virtualization  technology;  server 
virtualization,  storage  virtualization  and  then  network 
virtualization.   Industry trends predict that routers and 
firewall  will  vanish soon while they are morphing into 
big smart switches.

Bangalore  team  is  now  exploiting  super  fast  frame 
forwarding algorithms.  They are generalized for “search-
and-lookup”  computational  complexity  reduction 
problem.   Problem  statements  are  now  being  defined. 
The implementation of algorithms must be robust enough 

to handle incoming frame stream as fast  as  arriving in 
wire-speed  rate.   They  must  also  be  robust  enough 
combination explosions of matching rules.

VLDB search engine

In these days Very Large scale DB are directly connected 
with  Internet.   It's  working  in  real  time  manner.  The 
typical  case is  SNS like FaceBook.  “mem-caching” is 
now  a  common  tactic  to  implement  super  fast  search 
engine.  We recognize many-core processor and GPGPU 
are  now gathering industry attention  as  they would  be 
good  vehicle  in  engineering  sense  for  VLDB  search 
engine.

Desktop HPC “High Performance Computing”

It's a kind of human being's forever desire to own super 
computer  at  hand.   TILE-Gx  can  be  a  handy basis  of 
many-core 64bit general purpose computer.  It's said that 
the  next  generation  of  Gx  can  be  extended  by wiring 
multiple processor with InterLaken inter-connect.  Today 
a pair of Tesla GPGPU 16x lane PCIe cards can archive 
Tflops grade computing power.  Then, how about making 
the twenty first century incarnation of desktop personal 
computer,  let's  say,  whose outlook are just  like as SGI 
Indigo or NextCube?

7.  Conclusion

Poring  NetBSD  6.0  to  TILE-Gx  is  found  easier  than 
anticipated since NetBSD 6.0 provides SMP ready kernel 
constructs  and  API  sets  to  use.   The  number  of  lines 
written in assembler was very small as the essential part 
of porting burden are well defined.  VLIW nature of the 
processor is recognized not a hurdle.

Acknowledgment

Sanctum Networks wishes to express its gratitude to all 
members involved in this project, especially the members 
from Japan who contributed critically in the early stages.


	64bit SMP NetBSD OS Porting
	for TILE-Gx VLIW Many-Core Processor

