
Using BGP for realtime import and export of OpenBSD spamd entries

Peter Hessler

phessler@openbsd.org

OpenBSD

Bob Beck

beck@openbsd.org

OpenBSD

1 Introduction

In the battle against spam, many mail server admins collect and distribute IP addresses of systems that have sent

them spam. However, distribution of these lists are traditionally limited to 2 methods. Method #1 is periodically

downloading this list from a source, usually a web server - which is subject to load issues on the target web server.

#2 is a real-time lookup against an external provider (such as dns-rbls) so your response time is dependent upon

how fast they respond or timeout.

OpenBSD spamd1 is typically used as a daemon to stop the “low hanging fruit” of spam, by subjecting pre-

viously unseen hosts to greylisting to allow time to identify it they are a real mailserver. Real mailservers are

whitelisted locally after having passed greylisting, with their connections to the real mailservers monitored via

spamlogd2 . As such spamd keeps a list in a database of what it believes to be currently active “real” mailservers.

This paper suggests and discusses a 3rd solution: using BGP3 to distribute the IP addresses in a real-time

manner. By doing so we can take advantage of OpenBSD spamd’s information to distribute two useful lists via

BGP:

1. Each participant can share their TRAPPED entries from spamd(8) - hosts which the local spamd has deter-

mined should not be allowed to pass greylisting. Other hosts can use these lists to also prevent such hosts

from passing greylisting in the short term.

2. By taking advantage of the information kept in spamdb - each participant can share a subset of their WHITE

entries from spamdb, chosen based on criteria that makes them very likely to be real mail servers that are

continuing to exchange mail with the participating domain on a regular basis. By doing this all participants

can use this information to build a bypass table in pf4 so that all such “real mailservers” talking to any

participant in the network are not subjected to greylisting.

Having a greater amount of information is, of course, a great boon to a mail server administrator. This paper

will show how an admin can use blacklist entries to not only block access from badly behaving mail servers, but,

more importantly, allow access from so-called “known good” mail servers.

1.1 Traditional use of spamd(8)

Traditionally, OpenBSD users will use the spamd(8) daemon included with OpenBSD. This daemon will keep

track of hosts it has communicated with, and put them in one of 3 lists. GREY, WHITE, and TRAPPED which

are tracked in spamd’s spamdb5 database.

Whitelisted (WHITE) hosts do not talk to spamd(8), and are instead sent to the real mailserver.

Greylisted (GREY) hosts are not on the WHITE or TRAPPED lists. Normally these are hosts for which no

SMTP6 activity has been seen previously. These connections are redirected to spamd(8), and are given a tempo-

rary failure message when they try to deliver mail. Greylisted become Whitelisted after they retry delivery of the

same message more than 3 times and are still retrying after 30 minutes of delay.

Trapped (TRAPPED) hosts are hosts which have been identified as doing bad things during the time they are

Greylisted. Typically this is mailing to an unknown or spamtrap user, mailing with invalid smtp usage, or other

spam signature activity. These hosts can be TRAPPED, typically for 24 hours, and will not be allowed to pass

Greylisting during that time. This can be quite powerful because the trapping is only applied to hosts for which

mail has never been exchanged before. As an example, it is not unusual for a legitimate mail server to mail to

a large number of unknown users. However, it *is* unusual for a real mail server for which we have never ex-

changed mail with before to suddenly start mailing unknown users on its first communication with us.

Spamd also has the ability to use external blacklists, where clients on such a list will be given a rejection

message specific to that list. This allows the default Greylisting behaviour to be combined with external lists of

spam sources. The spamd-setup(8)7 utility sends external blacklist data to spamd, as well as configuring mail

rejection messages for blacklist entries. This utility uses method #1 to retrieve the list of blacklist entries.

In our case, we use BGP to distribute TRAPPED lists so that they may be used as external BLACK lists - as

well as distributing selected WHITE entries so they can be shared among sites.

2 Definitions: Client vs Route Server vs Spamd Source

In this paper, we will discuss a reference implementation network. The authors will implement this network and

it will be available for public use at “rs.bgp-spamd.net”.

There are three important parts of the reference implementation network.

Spamd Source: These systems are feeding the Route Server with IP addresses fed from GREYTRAP and WHITE

lists. They are the source of our spamd list information. Client systems are not able connect directly to the Spamd

Source systems, their information will be sent via the Route Server.

Our reference implementation uses: University of Alberta (aka uatraps), Bob Beck (aka obtuse.com), and Pe-

ter Hansteen (aka bsdly.net) as our Spamd Sources.

Route Server: This system is the center hub of the network. Both the Spamd Sources and the Client systems

connect. This system sorts and redistributes the BGP feeds from the Spamd Sources and distributes them to the

Clients.

Our implementation uses the reference server, “rs.bgp-spamd.net”

Client: Any end-user.

Originally using sources from OpenBSD’s /etc/mail/spamd.conf

3 Using BGP to distribute spamd lists

3.1 Basic explanation of BGP

In a traditional BGP network, Router A will send a list of IP networks assigned to itself, to all of its peers. Router

B will also distribute its IP networks, as well as the IP networks assigned to Router A. Router A can mark specific

IP networks with attributes, known as Communities, as a way to communicate with Router B some intentions for

these routes.

Some common examples of community meanings include “do not redistribute to a specific geographical area”,

“Prefix this route 3 times (make it less desirable to the peers)”, and “Blackhole this network”.

3.2 Our use of BGP

In this paper, we will use the fact that BGP is designed to distribute IP networks with community attributes to

distribute TRAPPED and certain WHITE entries from spamd. We want to do this for two reasons:

1. We distribute TRAPPED entries from trusted sources to use as BLACK lists - we are assuming that our

trusted sources have a reasonable criteria for trapping hosts, and that TRAPPED hosts are short lived.

2. We distribute a subset of the WHITE entries from spamd - Our goal is to distribute entries that we are

confident are “real” mailservers based on the information in the spamdb database. This list of “likely good

mailservers” can be used by participants to establish a bgp-spamd-bypass table managed by bgpd8 in pf.

The advantage of this is that “real” mailservers communicating regularly with any participant will not be

subjected to greylisting delays at all participants.

We have chosen some arbitrary BGP Communities for use in marking BLACK list and WHITE entries. The

authors have chosen $AS:666 for BLACK list entries, and $AS:42 for WHITE entries. In this case, $AS will be

expanded to the AS of the originating system. For additional filtering capabilities we will also copy this Commu-

nity and mark it with the AS on the Route Server.

While it is possible for a regular BGP router to be a member of this experiment, the authors recommend against

it. Clients MUST NOT make routing decisions based on the routes that we send, a large amount of host-specific

routes will be injected into the our BGP network, and care needs to be taken to ensure that the behaviour of one

BGP network does not affect the behaviour of the other. With our sample configuration files, client and server

entities do not need to be directly connected, and can easily be routed over the regular internet, even through NAT.

3.3 Distributing spamd bypass lists

When a previously unseen host hits OpenBSD spamd, it is normally subject to greylisting - meaning initial con-

nections will be delayed and forced to retry for 30 minutes. After 30 minutes, if the same tuple9 of mail is still

being retried the connecting host passes greylisting, and is whitelisted. Whitelisted hosts are kept for 30 days from

the time traffic from them is last seen, and spamd counts number of connections passed, keeping whitelisted hosts

from being subject to greylisting again as long as they continue to periodically send mail.

Some sites already use the recommendation of a <nospamd> table to bypass spamd for trusted networks -

often those may include things like Google’s mailserver networks, etc.

What we want for a spamd bypass list from other sources is not to know “this host passed greylisting” - but

rather “I am pretty sure this is a real mail server”. Using BGP puts a new and powerful dimension on this, as

participating systems can send real-time information about hosts that send mail to us.

OpenBSD spamd’s database stores the time entries were first whitelisted as well as how many connections

have been seen to pass to the real mailservers - this can be seen in the spamdb output.

We want to avoid putting “one off” servers - potentially spam software that retries connections, in the spamd

bypass list - So instead what we do is we feed BGP a list of whitelist connections that have been around con-

siderably longer than our expiry period (of 30 days), and who have made more than a trivial number of smtp

connections. At the moment we have chosen any host that has been whitelisted for more than 75 days, and who

has made at least 10 successful smtp connections. These hosts we share out in BGP so that they can be used by

Client systems to bypass spamd checks as they can be considered “trusted”.

The power of this is then “real” mailservers who frequently exchange mail with one participant will not see

greylisting delays with other participants who share the same bypass list distributed by BGP - effectively a well

chosen bypass list coming from BGP amounts to a dynamic list of established mailservers communicating with

all participants contributing to the list.

In our sample configuration, Client systems WILL NOT be allowed to make changes to the distributed lists.

The Route Server WILL reject and ignore all submitted routes from Client systems, and all Spamd Sources are con-

figured to reject connections from unknown systems. Additionally, the connections between the Spamd Sources

and the Route Server are protected with a variety of extra mechanisms, to further prevent generic BGP hijacking

or TCP layer attacks. These policies are to guarantee the integrity of the IP address lists, and to make sure that

incorrect information is not distributed.

3.4 Blacklist Source Selection Criteria

In selecting our sources for addresses to use for our blacklist, the authors chose to be very conservative. All up-

stream Blacklist Sources ONLY select IP addresses that have sent emails to specific spamtrap addresses or have

otherwise been marked as spam by the mail server administrator. These IP addresses are automatically expired

after 24 hours. If the same IP address attempts to send an email to a spamtrap address during that time, the time

counter will be reset.

While manual adding of addresses is possible, this is generally avoided.

The list of Spamd sources was selected by the authors, to be trusted systems with personally known adminis-

trators. The authors are concerned about invalid or malicious information being added to the network so care has

been made that all information injected into this network will be based on trusted information.

All IPv4 addresses marked with the BLACK list community are /32 routes, which are IPv4 host-specific routes.

This prevents us from accidentally blocking systems that have not actually sent us any spam, but may be a network

“neighbour” of a spammer. This is enforced both on the Spamd source, and the Route Server.

As a side note, many of these sources are also found in the default OpenBSD /etc/mail/spamd.conf config-

uration file, and are generally well-known to the OpenBSD community.

3.5 Transmission Path from Spamd Source to Clients

When a Spamd Source wishes to add a specific IP address to the distributed whitelist, they run the equivalent of

this command:

bgpctl network add 192.0.2.55/32 community $AS:42

where 192.0.2.55 is the desired IP address, and where $AS is the AS number assigned to this Spamd Source.

Once this address is added to the system, the Spamd Source BGP process will see the new route, and tell all

of its peers (including the Route Server) about this new route. When the Route Server receives this, it will then

also notify all of its peers, including the Client systems. A Client system will receive it, and use the “match ...

set pftable” filter rule to add the IP address to the appropriate PF table.

A script to update the lists distributed by BGP on the Spamd Source is available in the Appendix.

4 Sample client configuration

Before we show a sample Client system configuration, the authors wish to show a sample of the output of bgpctl

show rib detail for a single entry, as the information contained is the basis of our filtering. This example is

a host route for 192.0.2.55 from AS 65043. The “Communities” entry shows that it has been marked with the

“65066:42” and the “65043:42” Communities, which means we can make decisions based on one or both of

them.

BGP routing table entry for 192.0.2.55/32

65043

Nexthop 198.18.0.191 (via ???) from 203.0.113.113 (203.0.113.113)

Origin IGP, metric 0, localpref 100, weight 0, external

Last update: 02:10:26 ago

Communities: 65066:42 65043:42

4.1 Sample client pf.conf

This section is used to declare what filters will be applied to the various lists in PF. In this sample configuration,

we will add a rule for the WHITE list bypass, to the default spamd(8) ruleset. In this sample, the default spamd(8)

ruleset is indented for easy identification.

table <spamd-white> persist

local bypass file.

table <nospamd> persist file "/etc/mail/nospamd"

new bypass file from BGP.

table <bgp-spamd-bypass> persist

we add this line

pass in quick log on egress proto tcp from <bgp-spamd-bypass> to any port smtp

everything else goes to spamd

Exiting spamd(8) configuration

pass in quick on egress proto tcp from <nospamd> to any port smtp

pass in quick log on egress proto tcp from <spamd-white> to any port smtp

pass in quick on egress proto tcp from any to any port smtp \

rdr-to 127.0.0.1 port spamd

pass out log on egress proto tcp to any port smtp

4.2 Sample client bgpd.conf

This section is used to connect to the Route Server and fetch the lists. After the lists are fetched, a filter is used to

add and remove the IP addresses to the specified PF tables.

/etc/bgpd.conf

Begin bgpd.conf

spamdAS="65066"

AS 65001

fib-update no # Do not change the routing table

group "spamd-bgp" {

remote-as $spamdAS

multihop 64

enforce neighbor-as no

rs.bgp-spamd.net

neighbor 81.209.183.113

announce none

}

’match’ is required, to remove entries when routes are withdrawn

match from group spamd-bgp community $spamdAS:42 set pftable "bgp-spamd-bypass"

EOF

4.3 Using spamd.conf to block BLACK list entries

A naive implementation can simply use PF to block BLACK list entries. This has the obvious disadvantage that

any host that is blocked, will not know it is being blocked and can simply assume that the destination system

is offline. Additionally, there will not be any way for the sender to know it is being blocked on purpose. This

information is necessary for several corner cases, where a mail server triggered the BLACK list entry, but is still

legitimate. In such a case, telling the sending server that they are on the BLACK list, allows for the administrator

to use alternate means of contact to explain why their system should not be blocked.

For these reasons, the authors strongly recommend that Client systems use spamd.conf10 as a means to in-

form systems on the BLACK list, that they are - in fact - blacklisted.

4.3.1 Blocking of Combined BGP blacklists

Here is a method to simply block all addresses on the BLACK list. This has the advantage of being simple for the

Client system administrator, however it require that the Client system administrator determine the reasons why

any address was blocked.

Below is a simple script for cron to update BLACK lists. It will print the host IP address of each entry to

the /var/mail/spamd.black file, then run spamd-setup (which will be configured next). Here, we use the

fact that the Route Serve marks all distributed BLACK list routes with the Community string 65066:666. It is

designed to be run from cron at a frequency faster than the greylist pass time, (for example, every 20 minutes) so

that the trapped lists are updated on a regular basis.

/usr/local/sbin/bgp-spamd.black.sh

#!/bin/sh

AS=65066

bgpctl show rib community ${AS}:666 | awk ’{print $2}’ | \

sed ’s/\/.*$//’ > /var/mail/spamd.black

/usr/libexec/spamd-setup

EOF

And a spamd.conf configuration file, for spamd-setup.

/etc/mail/spamd.conf

Configuration file for spamd.conf

all:\

:bgp-spamd:

bgp-spamd:\

:black:\

:msg="Your address %A has sent mail to a spamtrap\n\

within the last 24 hours":\

:method=file:\

:file=/var/mail/spamd.black:

EOF

4.3.2 Separation of BGP blacklists

Here is a method to use the Communities attribute to separate the blacklists into their original sources. This

method has the advantage of informing the sender exactly which list they were listed on so the sender can contact

the originator of the filter list, instead of every mail administrator using these lists. However, the main disadvan-

tage of this is that the Client systems will need to know some internal information about the BGP network, and

keep an up-to-date list in their spamd.conf and helper scripts.

In this example script, the ASes “65042”, “65043” and “65513” are used instead of the Route Server’s AS of

“65066”. This is so we can split out these specific upstream Spamd Source that are providing the information. By

specifically enumerating which lists that will be used, this will explicitly ignore any additional ASes that may be

providing us with BLACK list hosts. Users will need to adjust their scripts for local preferences.

The following script is appropriate to update spamd from the BGP BLACK list entries. It is designed to be run

from cron at a frequency faster than the greylist pass time, (for example, every 20 minutes) so that the BLACK

lists are updated on a regular basis.

/usr/local/sbin/bgp-spamd.black.sh

#!/bin/sh

for AS in 65042 65043 65513; do

bgpctl show rib community ${AS}:666 | awk {’print $2}’ | \

sed ’s/\/.*$//’ > /var/mail/spamd.${AS}.black

done

/usr/libexec/spamd-setup

EOF

And a spamd.conf configuration file, for spamd-setup(8).

/etc/mail/spamd.conf

Configuration file for spamd.conf

all:\

:bgp65042:bgp65043:bgp65513:

bgp65042:\

:black:\

:msg="Your address %A has sent mail to a foad.obtuse.com spamtrap\n\

within the last 24 hours":\

:method=file:\

:file=/var/mail/spamd.65042.black:

bgp65043:\

:black:\

:msg="Your address %A has sent mail to a ualberta.ca spamtrap\n\

within the last 24 hours":\

:method=file:\

:file=/var/mail/spamd.65043.black:

bgp65513:\

:black:\

:msg="Your address %A has sent mail to a bsdly.net spamtrap\n\

within the last 24 hours":\

:method=file:\

:file=/var/mail/spamd.65513.black:

EOF

4.4 Non-OpenBSD Clients

While this paper focuses on using OpenBSD for all 3 types of systems, non-OpenBSD clients can also use these

lists for their own anti-spam systems. While specific examples will not be discussed here, any user will need to

filter based on BGP Communities, and insert/remove those addresses into their preferred system - provided their

configuration does not alter the routes of the Client system.

Any reimplementation of this network can be done, as long as the Blacklist Source and Route Server systems

are able to add large amounts (150k +) of arbitrary IP host-nets with specific BGP Communities. This is normal

and very common when administering BGP networks, and should be possible with nearly all BGP server imple-

mentations.

4.5 Possible Risks to Client systems

While the risks of this configuration are minimal, there are still some possible issues.

1. Use of system resources. On a test system ran by one of the authors, the current (as of 2013-02-08) list

of 103k WHITE entries, and 50k BLACK list entries, the bgpd process uses 43.5M of memory, and the

bgp-spamd-bypass PF table is using approx 16M of memory. This can be a problem for low memory

machines.

2. When the bgpd process ends, it will empty the bgp-spamd-bypass PF table and no longer update the

spamd.conf BLACK list files. This will cause the amount of whitelisted systems to return to only what has

been seen locally, and the age of the BLACK list entries will quickly grow stale and invalid. The Authors

recommend that Client systems monitor and ensure that the bgpd is running.

5 Sample Route Server configuration

Here we describe an example configuration for the Route Server. In it, we connect to two Spamd Source systems,

and we also provide access for Client systems. Connections to the Spamd Sources are protected. For the Spamd

Source peer “upA”, TCP MD5 signatures are used. For connections to Spamd Source peer “downB”, we will use

IPsec with dynamic keying. The OpenBGPd daemon will set up the flows, and uses isakmpd(8)11 to manage the

session keys.

bgpd.conf follows on next page

myAS="65066"

AS $myAS

router-id 203.0.113.113

fib-update no

nexthop qualify via default

transparent-as yes

socket "/var/www/logs/bgpd.rsock" restricted

socket "/logs/bgpd.rsock" restricted

group blacklist-sources {

multihop 64

announce none

Neighbor upA - John Q Public - john.public@example.com

neighbor 198.51.100.198 {

dump all in "/tmp/upA-all-in-%H%M" 3600

descr "upA"

remote-as 65198

tcp md5sig key deadbeef

}

Neighbor downB - Mike Bolton - mike@bolt.example.net

neighbor 198.18.0.191 {

dump all in "/tmp/downB-all-in-%H%M" 3600

descr "downB"

remote-as 65191

ipsec ah ike

}

}

group RS {

announce all

set nexthop no-modify

enforce neighbor-as no

announce as-4byte no

multihop 64

ttl-security no

holdtime min 60

softreconfig in no

maxprefix 1 restart 5

neighbor 0.0.0.0/0 { passive }

}

deny from any

allow from group blacklist-sources

allow to any

Ensure that an IP to be blacklisted is only a host entry

deny from group blacklist-sources inet \

community neighbor-as:666 prefixlen < 32

deny from group blacklist-sources inet6 \

community neighbor-as:666 prefixlen < 128

Set my own community, so clients have an easy way to filter

match from group blacklist-sources \

community neighbor-as:666 set community $myAS:666

6 Security Concerns

This is a completely different BGP network from the global routing table. Any routes added here will not be

visible to or modify the global routing table, and will not prevent any IP traffic from flowing. Using the included

configurations will not change the routing table of any connected system, and will not attempt to steal or re-route

any traffic. Additionally, routes that are delivered to the Client systems are configured in such a way that routes

will not be accepted by the kernel, because the desired nexthop will not be directly reachable.

These routes are intended to be added to the PF table as a way to assist spamd in being more effective - both

in catching hosts that should not make their way through greylisting via a short term block list, and by allowing

real mailservers through via a bypass pf table to avoid greylisting delays. These routes are not intended for use

to restrict general connectivity.

6.1 Security Concerns for Spamd Sources

The sources for spamdb information used must be trusted to provide only valid information to the participants. It

must be agreed ahead of time what the selection criteria for a “real” mailserver is - as well as what the criteria for

trapping hosts is.

If a participant in the system is trapping hosts long term, this will affect all participating sites (for example, if

one participant summarily decides google.com is evil and always traps their hosts, all people using their traplist

to blacklist hosts will be affected). Similarly, if a participant in the system does not apply a sufficient degree of

care to ensure entries published to the bypass list are “real” smtp servers - you run the risk of more spam leakage

coming through.

Additionally, all sources must themselves be kept secure. Someone with nefarious intent who can manipulate

one of the participant’s BGP servers can easily publish erroneous information to either prevent mail from coming

through at all, or allow lots of spam to bypass spamd. (Imagine if a participant were to advertise 0.0.0.0/0 as a

member of the bypass or trapped lists.)

In order to protect the integrity of the IP address lists, it is recommended that Spamd sources protect their BGP

sessions to the Route Servers with security features such as TCP MD5 signatures or IPSec tunnels.

6.2 Security Concerns for Route Servers

The Route Servers MUST NOT accept a default or 0.0.0.0/0 route from Spamd Sources. The Route Server

needs to ensure that the entire internet is not either WHITE listed, nor BLACK listed.

The Route Server SHOULD NOT accept non-host routes from Spamd Sources. The authors strongly recom-

mend that each and every host to be BLACK listed or WHITE listed instead be explicitly enumerated. Local

implementations may adjust this for their own needs, but the authors recommend that sites be conservative with

their lists, to allow actual behaviour dictate which list a host should be on.

The Route Server MUST NOT accept any entries from Client systems. Client systems are unknown and un-

trusted, and the administrator does not know of the quality of their lists.

Like all publicly facing systems, Route Servers SHOULD install security patches and be generally kept up to

date.

6.3 Security Concerns for Clients

Client systems SHOULD NOT modify local routing table based on received routes and SHOULD block only smtp

traffic based on the received routes. The ability to ping or connect to a website on the same IP address as a BLACK

list host is valuable, as well as emailing the administrator of the BLACK list host. Additionally, WHITE entries

should not modify the routing table, as we are only listing host IP addresses, and not a “better” route for these hosts.

7 Future Work

Future work on this topic include collecting statistics about the addresses being distributed, as well as the churn

rate. Additionally, work on simplifying inserting the traplist addresses into spamd(8) is desired.

8 Acknowledgements

Many thanks to Peter N.M. Hansteen of BSDly.net, Bob Beck of obtuse.com, and the University of Alberta at

ualberta.ca for being sources of spamdb information.

Thanks to Claudio Jeker and Stuart Henderson for assistance with BGP design and behaviour.

9 Availability

This paper, as well as client configuration examples are available at

http://www.bgp-spamd.net/

It is planned that the reference server “rs.bgp-spamd.net” will provide this service for the entirety of calendar

year 2013. In December 2013, there will be an announcement about the future status of this project.

Please note that this reference server is an experiment and is subject to modification and closing. The authors

will attempt to provide reasonable notice before closing the list, however no guarantees can be made.

An announcement mailing list will be available via the website, for important Client system announcements,

as well as the general status of the reference implementation.

Appendix

The following is appropriate to update the BGP source from spamd output. It is designed to be run from cron at

a frequency faster than the greylist pass time, (for example, every 10 minutes) so that the trapped lists are updated

before machines are passed on other sites.

#!/usr/bin/perl

Copyright (c) 2013 Bob Beck <beck@obtuse.com> All rights reserved.

#

Permission to use, copy, modify, and distribute this software for any

purpose with or without fee is hereby granted, provided that the above

copyright notice and this permission notice appear in all copies.

#

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR

ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF

OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

perl to parse spamdb output and deal with bgpd. can take multiple

spamdb output from multiple mail servers on command line, talks

to bgpd on localhost to update whitelist.

for typical use from a number of spamd collectors collect spamdb output

in a number of files, and then run this script on the bgpd machine with

all the files as command line args to the script.

so typical use from cron is either

#

ssh machine1 "spamdb" > machine1.spamdb

ssh machine2 "spamdb" > machine2.spamdb

bgpspamd.perl machine1.spamdb machine2.spamdb

#

If bgpd is not running on the spamd machine, or if spamd and bgpd are

only running on the same machine

#

spamdb | bgpspamd.perl

#

use integer;

AS to use - please change from this value.

my $AS = 65535;

community string for spamd bypass - where trusted whitelist entries get sent.

my $CS = 42;

community string for spamd traps - where we send traps.

my $TCS = 666;

These two control how we pick only good whitelist entries to

recommended for spamd bypass - we want to only send things we are

relatively certain are "real" mailservers - not leakage from

spam software that retries. for this to be effective we do have

to be logging real connecitons to our mailservers and noticing

them with spamlogd.

#

Only distribute white entries that are older than 75 days

my $agelimit = 3600 * 24 * 75;

Only distribute white entries that have made more than 10 smtp connections.

my $maillimit = 10;

my %ips;

my %tips;

my $key;

while (<>) {

my $now = time();

if (/^WHITE/) {

chomp;

my @line = split(/\|/);

if (($line[5] < $now - $agelimit) && $line[8] > $maillimit) {

$ips{"$line[1]"}=1;

}

} elsif (/^TRAPPED/) {

chomp;

my @line = split(/\|/);

$tips{"$line[1]"}=1;

}

}

open (BGP, "bgpctl show rib community $AS:$CS|") || die "can’t bgpctl!";

while (<BGP>) {

if (/^AI/) {

chomp;

my @line = split;

my $ip = $line[1];

$ip =~ s/\/.*$//;

$ips{$ip}-=1;

}

}

close(BGP);

open (BGP, "bgpctl show rib community $AS:$TCS|") || die "can’t bgpctl!";

while (<BGP>) {

if (/^AI/) {

chomp;

my @line = split;

my $ip = $line[1];

$ip =~ s/\/.*$//;

$tips{$ip}-=1;

}

}

close(BGP);

foreach $key (keys %ips) {

if ($ips{$key} > 0) {

system "bgpctl network add $key community $AS:$CS > /dev/null 2>&1\n";

} elsif ($ips{$key} < 0) {

system "bgpctl network delete $key community $AS:CS > /dev/null 2>&1\n";

}

}

foreach $key (keys %tips) {

if ($tips{$key} > 0) {

system "bgpctl network add $key community $AS:$TCS > /dev/null 2>&1\n";

} elsif ($tips{$key} < 0) {

system "bgpctl network delete $key community $AS:$TCS > /dev/null 2>&1\n";

}

}

Notes

1 spamd(8), spamd - spam deferral daemon, OpenBSD manual pages
2 spamdlogd(8), spamlogd - spamd whitelist updating daemon, OpenBSD manual pages
3 RFC4271, Y. Rekhter, T. Li, and S. Hares, ”A Border Gateway Protocol 4 (BGP-4)”, January 2006
4 pf(4), pf - packet filter, OpenBSD manual pages
5 spamdb(8), spamdb - spamd database tool, OpenBSD manual pages
6 RFC 822, Postel, J., ”SIMPLE MAIL TRANSFER PROTOCOL”, August 1982
7 spamd-setup(8), spamd-setup - parse and load file of spammer addresses, OpenBSD manual pages
8 bgpd(8), bgpd - Border Gateway Protocol daemon, OpenBSD manual pages
9 connecting IP address, HELO/EHLO, envelope-from, and envelope-to of the connection

10 spamd.conf(5), spamd.conf - spamd configuration file, OpenBSD manual pages
11 isakmpd(8), isakmpd - ISAKMP/Oakley a.k.a. IKEv1 key management daemon, OpenBSD manual pages

