
Implements BIOS emulation support for 
BHyVe: A BSD Hypervisor

Abstract
Current BHyVe only supports FreeBSD/amd64 
as a GuestOS.
One of the reason why BHyVe cannot support 
other OSes is lack of BIOS support.
My project is implementing BIOS emulator on 
BHyVe, to remove these limitations.

1. Background
1.1 History of virtualization on x86 
architecture
There's a famous requirements called "Popek 
& Goldberg Virtualization requirements"1, 
which defines a set of conditions sufficient for 
an architecture to support virtualization 
efficiently.
Efficient virtualization means virtualize 
machine without using full CPU emulation, run 
guest code natively.
Explain the requirements simply, to an 
architecture virtualizable, all sensitive 
instructions should be privileged instruction.
Sensitive instructions definition is the 
instruction which can interfere the global status 
of system.
Which means, all sensitive instructions 
executed under user mode should be trapped 
by privileged mode program.
Without this condition, Guest OS affects Host 
OS system status and causes system crash.
x86 architecture was the architecture which 
didin’t meet the requirement, because It had 
non-privileged sensitive instructions.

To virtualize this architecture efficiently, 
hypervisors needed to avoid execute these 
instructions, and replace instruction with 
suitable operations.
There were some approach to implement it:
On VMware approach, the hypervisor replaces 
problematic sensitive instructions on-the-fly, 
while running guest machine. This approach 
called Binary Translation2.
It could run most of unmodified OSes, but it 
had some performance overhead. 
On Xen approach, the hypervisor requires to 
run pre-modified GuestOS which replaced 
problematic sensitive instructions to dedicated 
operations called Hypercall. This approach 
called Para-virtualization3.
It has less performance overhead than Binary 
Translation on some conditions, but requires 
pre-modified GuestOS.
Due to increasing popularity of virtualization 
on x86 machines, Intel decided to enhance x86 
architecture to virtualizable.
The feature called Intel VT-x, or Hardware-
Assisted Virtualization which is vendor 
neutral term.
AMD also developed hardware-assisted 
virtualization feature on their own CPU, called 
AMD-V.

1.2 Detail of Intel VT-x
VT-x provides new protection model which 
isolated with Ring protection, for 
virtualization.
It added two CPU modes, hypervisor mode 
and guest machine mode.
Hypervisor mode called VMX Root Mode, 
and guest machine mode called VMX non 
Root Mode(Figure 1).

 Gerald J. Popek and Robert P. Goldberg. 1974. Formal requirements for virtualizable third 

generation architectures. Commun. ACM 17, 7 (July 1974), 412-421. DOI=10.1145/361011.361073 
http://doi.acm.org/10.1145/361011.361073

2 Brian Walters. 1999. VMware Virtual Platform. Linux J. 1999, 63es, Article 6 (July 1999).

3 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, 
Ian Pratt, and Andrew Warfield. 2003. Xen and the art of virtualization. In Proceedings of the 
nineteenth ACM symposium on Operating systems principles (SOSP '03). ACM, New York, NY, 
USA, 164-177. DOI=10.1145/945445.945462 http://doi.acm.org/10.1145/945445.945462

http://doi.acm.org/10.1145/361011.361073
http://doi.acm.org/10.1145/361011.361073
http://doi.acm.org/10.1145/945445.945462
http://doi.acm.org/10.1145/945445.945462


User
(Ring 3)

Kernel
(Ring 0)

User
(Ring 3)

Kernel
(Ring 0)

VMX
root mode

VMX
non-root

mode

Figure 1. VMX root Mode and VMX non-root 
Mode

On VT-x, hypervisor can run guest OS on 
VMX non Root Mode without any 
modification, including sensitive instructions, 
without affecting Host OS system status.
When sensitive instructions are being executed 
under VMX non Root Mode, CPU stops 
execution of VMX non Root Mode, exit to 
VMX Root Mode.
Then it trapped by hypervisor, hypervisor 
emulates the instruction which guest tried to 
execute.
Mode change from VMX Root Mode to VMX 
non-root Mode called VMEntry, from VMX 
non-root Mode to VMX Root Mode called 
VMExit(Figure 2).
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Figure 2. VMEntry and VMExit

Some more events other than sensitive 
instructions which need to intercept by 
hypervisor also causes VMExit.

For example, IN/OUT instruction causes 
VMExit, and hypervisor emulates virtual 
device access.
VT-x defines number of events which can 
cause VMExit, and hypervisor needs to 
configure enable/disable on each VMExit 
events.
Reasons of VMExit is called VMExit reason, 
it classified by genres of events.

Here are VMExit reason list:
• Exception or NMI
• External interrupt
• Triple fault
• INIT signal received
• SIPI received
• SM received
• Internal interrupt
• Task switch
• CPUID instruction
• Intel SMX instructions
• Cache operation instructions(INVD, 

WBINVD)
• TLB operation instructions(HNVLPG, 

INVPCID)
• IO operation instructions(INB, OUTB, etc)
• Performance monitoring conter operation 

instruction(RDTSC)
• SMM related instruction(RSM)
• VT-x instructions(Can use for implement 

nested virtualization)
• Accesses to control registers
• Accesses to debug registers
• Accesses to MSR
• MONITOR/MWAIT instructions
• PAUSE instruction
• Accesses to Local APIC
• Accesses to GDTR, IDTR, LDTR, TR
• VMX preemption timer
• RDRAND instruction



All configuration data related to VT-x stored to 
VMCS(Virtual Machine Control Structure), 
which is on memory data structure for each 
guest machine4.
Figure 3 shows VMCS structure.

1.3 VT-x enabled hypervisor lifecycle
Hypervisors for VT-x works as following 
lifecycle (Figure 4).

1. VT-x enabling
It requires to enable at first to use VT-x 
features.
To enable it, you need set VMXE bit on 
CR4 register, and invoke VMXON 
instruction.

2. VMCS initialization
VMCS is 4KB alined 4KB page.
You need to notify the page address to CPU 
by invoking VMPTRLD instruction, then 

write initial configuration values by 
VMWRITE instruction.
You need to write initial register values 
here, and it done by /usr/sbin/bhyveload.

3. VMEntry to VMX non root mode
Entry to VMX non root mode by invoking 
VMLAUNCH or VMRESUME instruction.
On first launch you need to use 
VMLAUNCH, after that you need to use 
VMRESUME.
Before the entry operation, you need to 
save Host OS registers and restore Guest 
OS registers.
VT-x only offers minimum automatic save/
restore features, rest of the registers need to 
take care manually. 

4. Run guest machine
CPU runs VMX non root mode, guest 
machine works natively.

4 If guest system has two or more virtual CPUs, VMCS needs for each vCPUs.
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VMExit reason stored here.

Figure 3. Structure of VMCS



5. VMExit for some reason
When some events which causes VMExit, 
CPU returns to VTX root mode.
You need to save/restore register at first, 
then check the VMExit reason.

6. Do emulation for the exit reason
If VMExit reason was the event which 
requires some emulation on hypervisor, 
perform emulation. (Ex: Guest OS wrote 
data on HDD
Depending Host OS scheduling, it may 
resume VM by start again from 3, or task 
switch to another process.

1.4 Memory Virtualization
Mordan multi-tasking OSes use paging to 
provide individual memory space for each 
processes.
To run guest OS program natively, address 
translation on paging become problematic 
function.
For example (Figure 5):
You allocate physical page 1- 4 to Guest A, and 
5-8 to GuestB.
Both guests map page 1 of Process A to page 1 
of guest physical memory.
Then it should point to:
• Page 1 of Process A on Guest A -> 

Page 1 of Guest physical memory -> 
Page 1 of Host physical

• Page 1 of Process B on Guest B -> 
Page 1 of Guest physical memory -> 
Page 5 of Host physical

But, if you run guest OS natively, CPU will 
translate Page 1 of Process B on Guest B to 
Page 1 of Host physical memory.
Because CPU doesn’t know the paging for 
guests are nested.

There is software technique to solve the 
problem called shadow paging (Figure 6).
Hypervisor creates clone of guest page table, 
set host physical address on it, traps guest 
writing CR3 register and set cloned page table 
to CR3.
Then CPU able to know correct mapping of 
guest memory.
This technique was used on both Binary 
translation based VMware, and also early 
implementation of hypervisors for VT-x.
But it has big overhead, Intel decided to add 
nested paging support on VT-x from Nehalem 
micro-architecture.

EPT is the name of nested paging feature 
(Figure 7),
It simply adds Guest physical address to Host 
physical address translation table.
Now hypervisor doesn’t need to take care guest 
paging, it become much simpler and faster. 

3. VMEntry to VMX 
non root mode

4. Run guest 
machine

5. VMExit for some 
exit reason

6. Do emulation for 
the exit reason

2. VMCS 
initialization

1. VT-x enabling

7. Run another 
process

Figure 4. VT-x enabled hypervisor lifecycle
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Actually, not all VT-x supported CPUs 
supports EPT, on these CPUs hypervisors still 
need to do shadow paging.

2. BHyVe: BSD Hypervisor
2.1 What is BHyVe?
BHyVe is new project to implement a 
hypervisor witch will integrate in FreeBSD.
The concept is similar to Linux KVM, it 
provides “hypervisor driver” to unmodified 
BSD kernel running on bare-metal machine.
With the driver, the kernel become a 
hypervisor, able to run GuestOS just like 
normal process on the kernel.
Both hypervisors are designed for hardware 
assisted virtualization, unlike Xen’s para-
virtualization and VMware’s binary translation.
The kernel module only provides a feature to 
switch CPU modes between Host mode and 
Guest mode, almost all device emulation is 
performed in userland process.

2.2 Difference of approach between Linux 
KVM and BHyVe
Linux KVM uses modified QEMU5 as the 
userland part6.
It’s good way to support large coverage of 
Guest OSes, because QEMU is highly 
developed emulator, many people already 
confirmed to run variety of OSes on it.
KVM could support almost same features what 
QEMU has, and it just worked fine.
BHyVe’s approach is different.

BHyVe implements minimum set of device 
support which required to run FreeBSD guest, 
from scratch.
In the result, we could have completely GPL-
free, BSD licensed, well coded hypervisor, but 
it only supports FreeBSD/amd64 as a Guest 
OS at this point.
One of the reason why BHyVe cannot support 
other OSes is lack of BIOS support.
BHyVe loads and executes FreeBSD kernel 
directly using custom OS loader runs on Host 
OS, instead of boot up from disk image.
With this method, we need to implement OS 
loader for each OSes, and currently we don’t 
have any loader other than FreeBSD.
Also, it doesn’t support some OSes which calls 
BIOS function while running.
So I started the project to implementing BIOS 
emulator on BHyVe, to remove these 
limitations.

2.3 Hardware requirements 
BHyVe requires an Intel CPU which supports 
Intel VT-x and EPT.
It means you will need Nehalem core or later 
Intel CPUs, because EPT is only supported on 
these processors.
Currently, AMD-V is not supported.
Installing on physical machine is best choice, 
but it also works on recent version of VMware, 
using Nested virtualization feature7.

2.3 Supported features
BHyVe only supports FreeBSD/amd64 8-10 
for guest OS.

5 Original QEMU has full emulation of x86 CPU, but on KVM we want to use VT-x hardware 

assisted virtualization instead of CPU emulation.
So they replace CPU emulation code to KVM driver call.

6 Strictly speaking, KVM has another userland implementation called Linux Native KVM Tools, 
which is built from scratch - same as BHyVe’s userland part.
And it has similar limitation with BHyVe.

7 The technology which enables Hypervisor on Hypervisor. Note that it still requires Nehalem 
core or later Intel CPUs even on VMware.



It emulates following devices:
• HDD controller: virtio-blk
• NIC controller: virtio-net
• Serial console: 16550 compatible PCI UART
• PCI/PCIe devices passthrough (VT-d)
Boot-up from virtio-blk with PCI UART 
console is not general hardware configuration 
on PC architecture, we need to change guest 
kernel settings on /boot/loader.conf(on guest 
disk image).
And some older FreeBSD also need to add a 
virtio drivers8.
PCI device passthrough is also supported, able 
to use physical PCI/PCIe devices directly.
Recently ACPI support and IO-APIC support 
are added, which improves compatibility with 
existing OSes.

2.4 BHyVe internal
BHyVe built with two parts: kernel module and 
userland process.
The kernel module is called vmm.ko, it 
performs actions which requires privileged 
mode (ex: executes VT-x instructions.
Userland process is named /usr/sbin/bhyve, 
provides user interface and emulates virtual 
hardwares.
BHyVe also has OS Loader called /usr/sbin/
bhyveload, loads and initializes guest kernel 
without BIOS.
/usr/sbin/bhyveload source code is based on 
FreeBSD bootloader, so it outputs bootloader 
screen, but VM instance is not yet executing at 
that stage.
It runs on Host OS, create VM instance and 
loads kernel onto guest memory area, 
initializes guest machine registers to prepare 
direct kernel boot.
To destroy VM instance, VM control utility /
usr/sbin/bhyvectl is available.
These userland programs are accesses vmm.ko 
via VMM control library called libvmmapi.
Figure 8 illustrates overall view of BHyVe.
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Figure 8. BHyVe overall view

3. Implement BIOS 
Emulation
3.1 BIOS on real hardware
BIOS interrupt calls are implemented as 
software interrupt handler on real mode(Figure 
9).
CPU executes initialization code on BIOS 
ROM at the beginning of startup machine, it 
initializes real mode interrupt vector to handle 
number of software interrupts reserved for 
BIOS interrupt calls(Figure 10).
BIOS interrupt calls aren’t only for legacy 
OSes like MS-DOS, almost all boot loaders for 
mordan OSes are using BIOS interrupt call to 
access disks, display and keyboard.

3.2 BIOS on Linux KVM
On Linux KVM, QEMU loads Real 
BIOS(called SeaBIOS) on guest memory area 
at the beginning of QEMU startup.
KVM version of SeaBIOS’s BIOS call handler 
accesses hardware by IO instruction or 
memory mapped IO, and the behavior is 
basically same as BIOS for real hardware.
The difference is how the hardware access 
handled.
On KVM, the hardware access will trapped by 
KVM hypervisor driver, and QEMU emulates 

8 virtio is para-virtual driver which designed for Linux KVM. para-virtual driver needs special 
driver for guest, but usually much faster than full emulation driver.
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hardware device, then KVM hypervisor driver 
resume a guest environment(Figure 11).
In this implementation, KVM and QEMU 
doesn’t trap BIOS interrupt calls, it just loads 
real BIOS on guest memory space(Figure 12) 
and emulates hardware device.

3.3 Emulating BIOS on BHyVe
3.3.1 doscmd
Port SeaBIOS on BHyVe and implement 
hardware emulation was an option, and it was 
probably best way to improve compatibility of 
legacy code, but SeaBIOS is GPL’d software, 
it’s not comfortable to bring in FreeBSD code 
tree.
And there’s no implementation non-GPL 
opensourced BIOS.
Instead, there’s BSD licensed DOS Emulator 
called doscmd.
It’s the software to run old DOS application on 
FreeBSD using virtual 8086 mode, similar to 
DOSBox(but DOSBox is GPL’d software).

The emulator mechanism is described as 
follows:
1. Map pages to lowmem area (begin from 

0x0), load the DOS application on the area.
2. Enter virtual 8086 mode, start executing 

the DOS application.
3. DOS application invokes BIOS interrupt 

call or DOS API call by INTx instruction.
4. DOS Emulator traps software interrupt, 

emulate BIOS interrupt call or DOS API 
call.

5. Resume DOS application.
It traps BIOS interrupt calls and DOS API calls 
and emulate them on FreeBSD protected mode 
program.
I decided to port the BIOS interrupt call 
emulation code to BHyVe and trap BIOS 
interrupt call on BHyVe, instead of porting real 
BIOS.

3.3.2 Run real mode program on VT-x
On older implementation of VT-x enabled CPU 
doesn’t allow to VMEnter the guest which 
doesn’t enable paging.

Which means real mode program cannot run 
on VT-x, and hypervisors needed to virtualize 
real mode without VT-x.
Linux KVM used full CPU emulation using 
QEMU to virtualize real mode.
Some other hypervisors are used virtual 8086 
mode. 
This issue was resolved by extending VT-x 
features.
Intel added unrestricted guest mode on 
Westmere micro-architecture and later Intel 
CPUs, it uses EPT to translate guest physical 
address access to host physical address. 
With this mode, VMEnter without enable 
paging is allowed.
I decided to use this mode for BHyVe BIOS 
emulation.

3.3.3 Trapping BIOS interrupt call
VT-x has functionality to trap various event on 
guest mode, it can be done by changing VT-x 
configuration structure called VMCS.
And BHyVe kernel module can notify these 
events by IOCTL return.
So all I need to do to trapping BIOS call is 
changing configuration on VMCS, and notify 
event by IOCTL return when it trapped.
But the problem is which VMExit event is 
optimal for the purpose.
It looks like trapping software interrupt is the 
easiest way, but we may have problem after 
Guest OS switched protected mode.
Real mode and protected mode has different 
interrupt vector.
It’s possible to re-use BIOS interrupt call 
vector number for different purpose on 
protected mode.
Maybe we can detect mode change between 
real mode/protected mode, and enable/disable 
software interrupt trapping, but it’s bit 
complicated.

Instead of implement complicated mode 
change detection, I decided to implement 
software interrupt handler which cause 
VMExit.



The handler doesn’t contain programs for 
handling the BIOS interrupt call, just perform 
VMExit by VMCALL instruction.
VMCALL causes unconditional VMExit.
It’s for call hypervisor from guest OS, such 
function is called Hypercall.

Following is simplest handler implementation:
 VMCALL
 IRET

Even program is same, you should have the 
handler program for each vector.
Because guest EIP can be use for determine 
handled vector number.

If you place BIOS interrupt call handler start at 
0x400, and program length is 4byte for each 
(VMCALL is 3byte + IRET is 1byte), you can 
determine vector number from hypervisor with 
following program:

vector = (guest_eip - 0x400) / 0x4; 

BHyVe need to initialize interrupt vector and 
set pointer of the handler described above.
In this way, it doesn’t take care about mode 
changes anymore.

Figure 13 shows BIOS interrupt call 
mechanism on my implementation.
On the implementation, it traps BIOS interrupt 
call itself, emulates by hypervisor.

4. Implementation
Most of work are rewriting doscmd to fit 
BHyVe interface, from FreeBSD virtual 8086 
API.

•  Code was 64bit unsafe
doscmd was designed only for 32bit x86, and 
BHyVe is only for amd64.
So I need to re-write some codes to 64bit safe.

ex:
 u_long
　　　 ↓
 uint32_t

• Guest memory area started from 0x0
To use virtual 8086, doscmd places guest 
memory area from 0x0.
But BHyVe’s guest memory area is mapped to 
non-zero address, we need to move all address 
to BHyVe’s guest memory area.

ex:
 *(char *)(0x400) = 0;
  　　　↓
 *(char *)(0x400 + guest_mem) = 0;

• Interface with /usr/sbin/bhyve
I don’t wanted to mix doscmd’s complicated 
source code with /usr/sbin/bhyve’s code, so I 
modified doscmd’s Makefile to build it as a 
library.
And named it libbiosemul.

Software interrupt(INTx)

CPU reads interrupt vector

Execute pseudo BIOS call handler

BHyVe BIOS 
Emulation

VMCALL Trap
Pseudo BIOS issue 

VMCALL instruction
(Hypercall)

BHyVe emulates BIOS callHyperVisor

Guest

int 13h

Figure 13. BIOS interrupt call mechanism on BHyVe



It exposed only few functions:

void biosemul_init(struct vmctx 
*ctx, int vcpu, char *lomem, int 
trace_mode);

int biosemul_call(struct vmctx 
*ctx, int vcpu);

biosemul_init is called at initialization.
biosemul_call is main function, which called at  
every BIOS call.

• Guest register storage
doscmd stored guest register values on their 
structure, but BHyVe need to call ioctl to get / 
set register value.
It’s hard to re-write all code to call ioctl, so I 
didn’t changed doscmd code.
I just copy all register values to doscmd struct 
at beginning of BIOS call emulation, and 
copyback it the end of the emulation.

• Instruction level tracing
I implemented instruction level tracer to debug 
BIOS emulator.
It’s also uses psuedo BIOS interrupt call 
handler to implement.

5. Development status
It still early stage of development, none of 
OSes boots up with the BIOS emulator.
I’m focusing to boot-up FreeBSD/amd64, now 
mbr and boot1 are working correctly.


